

Welcome to PyPlanet’s documentation!

[image: _images/pyplanet-sm.png]
PyPlanet is a Maniaplanet/Trackmania Dedicated Server Controller that works on Python 3.6 and later.
Because Maniaplanet/Trackmania is using a system that can be event based we use AsyncIO to provide
an event loop and have simultaneously processing of received events from the dedicated server.

Features:

	Core: Super fast and ‘event’ driven based on Python 3.5 asyncio eventloop.

	Core: Stable and well designed core and apps system. (Inspired by Django).

	Core: All apps will handle the game experience.

	Core: Adjustable settings for all your apps.

	Core: Supports Trackmania 2, Trackmania 2020 and Shootmania, Scripted only!

	App: Local Records, including widget + list.

	App: Dedimania Records, including widget + list.

	App: Admin Commands, Providing with basic commands and control for maintaining your server.

	App: Admin Toolbar, Providing mostly used admin functions within a few clicks.

	App: Karma, Let your players vote on your maps! Includes MX Karma integration.

	App: Jukebox, Let your players ‘juke’ the next map.

	App: ManiaExchange, Simply add your maps directly from Mania-Exchange.

	App: Players, This app shows messages when players join and leave.

	App: Transactions, Donate planets to the server, show number of planets on server and pay out players.

	App: Live Rankings, Show the live rankings of the game mode. (Trackmania).

	App: Sector Times, Compare your checkpoint time against your local or dedimania record. (Trackmania).

	App: Dynamic Pointlimit, Royal point limit adjustment based on the number of players. (Shootmania Royal).

	App: CP Times, Show the best checkpoint times on top of your screen.

	App: Chat based voting, No more uncontrollable and unfair Call Votes. Use chat based voting.

	App: Vote to extend the TimeAttack limit instead of restarting the map! Extend-TA© command and voting is awesome!

	App: Waiting Queue, no more unfair and spamming of the join button, fairly queue spectators to join your full server.

	App: Add links to your PayPal donate page or Discord server.

Do you want to install PyPlanet, head towards our Getting Started Manual.
Want to see PyPlanet in action, head to Screenshots.

The code is open source, and available on GitHub [https://github.com/PyPlanet].

The main documentation for the site is organized into a couple sections:

	User Documentation

	Apps Documentation

	About PyPlanet

Information about development of apps and the core is also available under:

	Developer Documentation

User Documentation

	Getting Started (installation)
	Requirements

	Installation on Linux

	Installation on Windows

	Configuring PyPlanet
	Debug Mode (base)

	Pool defining (base)

	Owners (base)

	Database configuration (base.py)

	Dedicated Server (base)

	Server files settings (base)

	Storage (base)

	Cache (base)

	Self Upgrade (base)

	Songs (base)

	Logging (base)

	Enabling apps (apps)

	Starting PyPlanet
	Start and fork to PID file (Linux)

	Start/stop with Screen (Linux)

	Install SystemD Service (Linux)

	Start standalone and in foreground (Linux and Windows)

	Upgrading PyPlanet
	In-game upgrade method

	Manual PIP method

	Migrating from old controller
	Migrating from Xaseco2

	Migrating from UAseco

	Migrating from eXpansion

	Migrating from ManiaControl

	How To’s and troubleshooting
	Correct Database Collation (MySQL)

	MySQL Complaining about large indexes (1000 bytes)

Apps Documentation

	Admin

	Advertisements

	Best CPs

	Clock

	Dedimania Records

	Dynamic Points

	Dynatime

	Jukebox

	Karma

	Live Rankings

	Local Records

	Map Info

	Music Server

	ManiaExchange / TrackmaniaExchange

	Players

	Waiting Queue

	Sector Times

	Transactions

	Voting

	Fun Commands

	Statistics

	PyPlanet Core/Toolbox

Developer Documentation

	Architecture & Design
	Core Architecture

	Apps Architecture

	App Development
	Apps Architecture

	Life Cycle

	Create app

	Context (UI + Settings)

	Contrib + Core access

	Models

	Migrations

	Chat Messages

	Dedicated/Script methods

	User Interface

	Useful references

	Signals (callbacks)
	Maniaplanet

	Shootmania

	Trackmania

	API Documentation
	pyplanet.apps

	pyplanet.views

	pyplanet.core.exceptions

	pyplanet.core.instance

	pyplanet.core.ui

	pyplanet.core.storage

	pyplanet.core.events

	pyplanet.god

	pyplanet.contrib.map

	pyplanet.contrib.player

	pyplanet.contrib.command

	pyplanet.contrib.permission

	pyplanet.contrib.setting

	pyplanet.contrib.mode

	pyplanet.contrib.converter

	pyplanet.contrib.chat

	pyplanet.utils

About PyPlanet

	Support & Contact

	Donate

	Privacy

	Changelog

	Todo (docs)

Some thoughts from experts

 Getting Started (installation)

Getting Started (installation)

	Requirements

	Installation on Linux

	Installation on Windows

 Requirements

Requirements

PyPlanet runs on Python 3.6 and later. Most linux distributions contain default packages or will come with Python
preinstalled. If you don’t have Python 3.6 you can still continue the installation, we will help you through the installation
of Python 3.6 in our installation guides!

Summary of requirements:

	Python 3.6+ and pip 9.

	MySQL Server or PostgreSQL Server.

	Maniaplanet Dedicated (Maniaplanet 4 is minimum)

Installation manuals:

Please head to one of our installation manuals to continue:

Linux Guide or Windows Guide

 Installation on Linux

Installation on Linux

Contents

	Installation on Linux

	1. Operating System needs

	Debian / Ubuntu

	Fedora / RHEL based

	2. Install PyEnv and Python

	3. Create environment for your installation

	4. PyPlanet Installation

	5. Setup Project

1. Operating System needs

PyPlanet requires Python 3.6 and later. We also require to have some operating system libraries and build tools installed.
We will guide you through the steps that are required to install those requirements in this subtopic.

Debian / Ubuntu

Install the operating system requirements by executing the following commands:

sudo apt-get update && sudo apt-get install build-essential libssl-dev libffi-dev python3-dev zlib1g-dev liblzma-dev

Fedora / RHEL based

Install the operating system requirements by executing the following commands:

sudo yum install gcc libffi-devel python3-devel openssl-devel zlib zlib-devel bzip2 bzip2-devel xz xz-devel sqlite sqlite-devel.

2. Install PyEnv and Python

To make things as easy as possible we are going to use PyEnv. It’s a tool that will install Python for you with
all the requirements and also manage to adjust the environment we are running in.

The following steps are the same for all distributions.

Note

Make sure you are logged in as the user that is going to run PyPlanet. (Mostly not root!).

Install PyEnv

curl -L https://raw.githubusercontent.com/pyenv/pyenv-installer/master/bin/pyenv-installer | bash
printf '\nexport PATH="$HOME/.pyenv/bin:$PATH"\neval "$(pyenv init -)"\neval "$(pyenv virtualenv-init -)"\n' >> ~/.bashrc
source ~/.bashrc

Install Python

pyenv install 3.7.6
pyenv global 3.7.6

Attention

The first set of commands makes adjustments to the ~/.bashrc file. It can be that you don’t have this file installed.

If that is the case, you can add those lines manually to any other script that is executed when you open your shell (.profile)
or execute these commands manually at every start of a SSH session. Your SSH session might have to be restarted after this change!

export PATH="~/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

3. Create environment for your installation

We recommend to separate multiple installations by creating a so called virtual environment. This will make sure you can
run several PyPlanet and dependency versions on the same Python installation. You can skip this step if you don’t want to
use virtual environments, but we recommend to use it.

Create virtualenv:

pyenv virtualenv 3.7.6 my-env
Where 'my-env' is your environment name, you need adjust this if you have multiple installations.

Activate virtualenv:

Note

You have to activate your virtual environment every time you want to execute PyPlanet commands! That means that you have
to activate before you update, start, develop and do anything with PyPlanet!

pyenv activate my-env
Where 'my-env' is your environment name, you need adjust this if you have multiple installations.

4. PyPlanet Installation

PyPlanet is published through the Python Package Index (PyPi) and is easy to install with pip.

pip install pyplanet --upgrade

After installing it on your system you can use the pyplanet cli commands. To get help about commands, use pyplanet help.

5. Setup Project

After installing PyPlanet on your system, you can’t yet start any instances because starting requires you to give up an
settings module. You could either provide this with the start command or create a project directory with skeleton files.

We recommend using the init_project command to create a local project installation where you can install apps, keep
PyPlanet and it’s apps up-to-date, provide settings through a useful settings module and provide manage.py as a wrapper
so you never have to manually provide your settings module.

In the example bellow we will setup a project with the name canyon_server. The folder canyon_server will be created
and skeleton files will be copied.

pyplanet init_project canyon_server

After setup your project, you have to install or update your dependencies from your local requirements.txt.

To upgrade your existing installation, see our Upgrading Guide.

Warning

If you use the virtual environment we installed in 3. Create environment for your installation, make sure you activate it before you install or update dependencies!

Head to the next step

Configure your PyPlanet installation now by going to the next chapter: Configuring PyPlanet.

 Installation on Windows

Installation on Windows

Contents

	Installation on Windows

	1. Installing Python

	2. Creating Virtual Environment

	3. PyPlanet Installation

	4. Setup Project

1. Installing Python

If you have not yet installed Python 3.6 or later on your Windows machine, do it now by going to the following link:

https://www.python.org/downloads/release/python-370/

Head towards the end of the page and click on the Windows x86-64 executable installer link. After starting the executable
you will get an wizard.

Make sure it looks like this and click on the red area to continue.

[image: Setup wizard with the required settings]
Setup wizard with the checkboxes enabled.

Note

Make sure you checked the two checkboxes: Install launcher for all users and Add Python to PATH.

2. Creating Virtual Environment

To prevent the usage of the administration leverage and to benefit from multiple PyPlanet installations and a clean environment
we recommend to setup a Virtual Environment.

First of all we need to install the virtualenv package. To do so, open a terminal screen by hitting start and write cmd. Open the command prompt.

pip install virtualenv

After this we will initiate the environment, you can do this by going to your directory where you want to setup the PyPlanet installation.
Create a folder somewhere that is empty and ready for the PyPlanet settings and other files.

Open a terminal in this folder by holding SHIFT and Right click on an empty space in the folder. Then click Open terminal here.

In the terminal, type the following command to create the environment:

virtualenv env

From now you have to activate the virtualenv, every time you want to execute operations with PyPlanet (such as starting, installing, updating, etc).
To activate, use the following commands:

Windows, in your command prompt
env\Scripts\activate.bat

3. PyPlanet Installation

PyPlanet is published through the Python Package Index (PyPi) and is easy to install with the pip commands.

pip install pyplanet --upgrade

After installing it on your system you can use the pyplanet cli commands. To get help about commands, use pyplanet help.

4. Setup Project

After installing PyPlanet on your system, you can’t yet start any instances because starting requires you to give up an
settings module. You could either provide this with the start command or create a project directory with skeleton files.

We recommend using the init_project command to create a local project installation where you can install apps, keep
PyPlanet and it’s apps up-to-date, provide settings through a useful settings module and provide manage.py as a wrapper
so you never have to manually provide your settings module.

Because you have created an Virtual Environment earlier you want to store your ‘project’ in the same folder. You can do this
with the following command:

pyplanet init_project .

After setup your project, you have to install or update your dependencies from your local requirements.txt.

To upgrade your existing installation, see our Upgrading Guide.

Warning

If you use the virtual environment we installed in 2. Creating Virtual Environment, make sure you activate it before you install or update dependencies!

Head to the next step

Configure your PyPlanet installation now by going to the next chapter: Configuring PyPlanet.

 Configuring PyPlanet

Configuring PyPlanet

Settings method is the method to read out settings. This can be one of the following methods/backends:

	python: Default, the python loader uses the files base.py and apps.py in the PYPLANET_SETTINGS_MODULE provided.

	json: Read json files base.json and apps.json in the provided PYPLANET_SETTINGS_DIRECTORY directory.

	yaml: Read yaml files base.yaml and apps.yaml in the provided PYPLANET_SETTINGS_DIRECTORY directory.

Settings module (python only) is where the PyPlanet settings are stored for python backend.
You provide the settings module by providing the environment variable PYPLANET_SETTINGS_MODULE.
Most of the times this is set in the manage.py.

In most cases this settings module is settings and is located at the project root subfolder settings.

Settings directory (json and yaml only) is where the two configuration files are located for the file based backends
such as JSON or YAML.

Split files is the default, based on the CLI project generation. This will create two files inside of the settings module,
the one is for apps (apps.py) and the other for all base configuration (base.py). For both other backends its quite the same.

Pools are the different instances that will be running from PyPlanet. PyPlanet supports multiple controllers from a
single setup and project, and even a start command. We are just spawning subprocesses when you start PyPlanet.
More information about this setup and architecture on the Architecture overview.

Case sensitive: Only the keys are not case insensitive (with exception of the Python backend). The value and the subkeys
are all case sensitive!

Warning

In the examples in this document you often find an dictionary with the key being default. This is a Pool aware setting
and is different for every pool.

If you are going to add another pool, you should add the pool name to the keys of the dictionary, and fill the value like it
is in the examples given here.

Also, the JSON examples always contain the opening and closing brackets in the examples. In a real file you would have these
only once around the whole file.

Debug Mode (base)

In most cases you don’t have to use this setting. This setting is only here for developers.
While you are in debug mode, there will be More verbose output, no reporting of exceptions, and debugging of SQL queries.

When generating a project with the CLI, you will find this setting to be looking at your environment variable PYPLANET_DEBUG.
Therefor, enable debug by starting PyPlanet with PYPLANET_DEBUG=1. Or changing the setting to DEBUG = True. This only works for the python config backend

base.yaml

DEBUG: false

base.json

{
 "DEBUG": false
}

Note

Please enable DEBUG when developing, as it won’t send reports to the PyPlanet developers, which needs time to investigate
and cleanup.

Pool defining (base)

You need to define the pools you want to start and have activated with the POOLS list.

base.py

Add more identifiers to start more controller instances.
POOLS = [
 'default'
]

base.yaml

POOLS:
 - default

base.json

{
 "POOLS": [
 "default"
]
}

Owners (base)

Because you want to have admin access at the first boot, you have to define a few master admin logins here. This is optional
but will help you to get started directly after starting. This setting is pool aware.

base.py

OWNERS = {
 'default': ['your-maniaplanet-login', 'second-login']
}

base.yaml

OWNERS:
 default:
 - your-maniaplanet-login
 - second-login

base.json

{
 "OWNERS": {
 "default": [
 "your-maniaplanet-login",
 "second-login"
]
 }
}

Database configuration (base.py)

The database configuration is mostly the first setting you will adjust to your needs. Currently PyPlanet has support for
these database drivers:

	peewee_async.MySQLDatabase: Using PyMySQL, a full Python based driver. (Supports MariaDB and PerconaDB).

	peewee_async.PostgresqlDatabase: Using a full native Python driver.

Creating database:

You will have to create the database scheme yourself. Make sure you create it with a database collate that is based on
UTF-8. We require for MySQL: utf8mb4_unicode_ci to work with the new symbols in Maniaplanet. Also, please make sure
your MySQL installation uses InnoDB by default, more information can be found here: MySQL Index Error

Create MySQL Database by running this command:

CREATE DATABASE pyplanet
 CHARACTER SET utf8mb4
 COLLATE utf8mb4_unicode_ci;

Configuration

Configuration can follow the following examples:

base.py

DATABASES = { # Using PostgreSQL.
'default': {
 'ENGINE': 'peewee_async.PostgresqlDatabase',
 'NAME': 'pyplanet',
 'OPTIONS': {
 'host': 'localhost',
 'user': 'pyplanet',
 'password': 'pyplanet',
 'autocommit': True,
 }
 }
}

DATABASES = { # Using MySQL (or MariaDB, PerconaDB, etc).
 'default': {
 'ENGINE': 'peewee_async.MySQLDatabase',
 'NAME': 'pyplanet',
 'OPTIONS': {
 'host': 'localhost',
 'user': 'pyplanet',
 'password': 'pyplanet',
 'charset': 'utf8mb4',
 }
 }
}

base.yaml

DATABASES:
 default:
 ENGINE: 'peewee_async.MySQLDatabase'
 NAME: 'pyplanet'
 OPTIONS:
 host: 'localhost'
 user: 'pyplanet'
 password: 'pyplanet'
 charset: 'utf8mb4'

base.json

{
 "DATABASES": {
 "default": {
 "ENGINE": "peewee_async.MySQLDatabase",
 "NAME": "pyplanet",
 "OPTIONS": {
 "host": "localhost",
 "user": "pyplanet",
 "password": "pyplanet",
 "charset": "utf8mb4"
 }
 }
 }
}

Dedicated Server (base)

This one is pretty important, and pretty simple too. Look at the examples bellow, and you know how to set this up!

base.py

DEDICATED = {
 'default': {
 'HOST': '127.0.0.1',
 'PORT': '5000',
 'USER': 'SuperAdmin',
 'PASSWORD': 'SuperAdmin',
 }
}

base.yaml

DEDICATED:
 default:
 HOST: '127.0.0.1'
 PORT: '5000'
 USER: 'SuperAdmin'
 PASSWORD: 'SuperAdmin'

base.json

{
 "dedicated": {
 "default": {
 "HOST": "127.0.0.1",
 "PORT": "5000",
 "USER": "SuperAdmin",
 "PASSWORD": "SuperAdmin"
 }
 }
}

Server files settings (base)

Some of these settings are required to be able to save match settings and to save the blacklisted players for example.

base.py

Map configuration is a set of configuration options related to match settings etc.
Matchsettings filename.
MAP_MATCHSETTINGS = {
 'default': 'autosave.txt',
}

You can set this to a automatically generated name:
MAP_MATCHSETTINGS = {
 'default': '{server_login}.txt',
}

Blacklist file is managed by the dedicated server and will be loaded and writen to by PyPlanet once a
player gets blacklisted. The default will be the filename Maniaplanet always uses and is generic.
BLACKLIST_FILE = {
 'default': 'blacklist.txt'
}

Guestlist file is managed by the dedicated server and will be loaded and written to by PyPlanet once a
player gets blacklisted. The default will be the filename Maniaplanet always uses and is generic.
GUESTLIST_FILE = {
 'default': 'guestlist.txt',
}

base.yaml

MAP_MATCHSETTINGS:
 default: 'maplist.txt'

BLACKLIST_FILE:
 default: 'blacklist.txt'

GUESTLIST_FILE:
 default: 'guestlist.txt'

base.json

{
 "MAP_MATCHSETTINGS": {
 "default": "maplist.txt"
 },
 "BLACKLIST_FILE": {
 "default": "blacklist.txt"
 },
 "GUESTLIST_FILE": {
 "default": "guestlist.txt"
 }
}

Storage (base)

This may need some explanation, why is this here? We wanted to be able to run PyPlanet on a separate machine as the dedicated
is. But also access files from the dedicated for investigating maps, loading and writing maps and settings.

To be able to make this simple, and robust, we will implement several so called storage drivers that will work local or remote (currently only local).

Local Dedicated

If you run your dedicated server locally, you should use the following setting:

base.py

STORAGE = {
 'default': {
 'DRIVER': 'pyplanet.core.storage.drivers.local.LocalDriver',
 'OPTIONS': {},
 }
}

base.yaml

STORAGE:
 default:
 DRIVER: 'pyplanet.core.storage.drivers.local.LocalDriver'

base.json

{
 "STORAGE": {
 "default": {
 "DRIVER": "pyplanet.core.storage.drivers.local.LocalDriver",
 "OPTIONS": {
 }
 }
 }
}

Cache (base)

Note

This functionality is not (yet) implemented. Please don’t define CACHE setting.

Self Upgrade (base)

New since 0.6.0 is the self-upgrader where the master admins can self upgrade the PyPlanet installation from within the game.
You don’t want this to be enabled on shared servers (hosting environments) as it may break your installation.

base.py

 SELF_UPGRADE = True

base.yaml

 SELF_UPGRADE: true

base.json

 {
 "SELF_UPGRADE": true
 }

Warning

Using the self-upgrade (//upgrade and `pyplanet upgrade`) is very experimental.
The method can break your installation. We don’t guarantee the working of the method.

We advice to use the manual PIP method of upgrading over the in-game upgrading process!

Songs (base)

Note

This setting only works in combination with the music_server app.
Enable the app by adding the app in your apps.py (or apps.json/apps.yaml).

You can add URL’s of the music to the SONGS list.

base.py

 SONGS = {
 'default': [
 'http://urltoogg'
 }
 }

base.yaml

 SONGS:
 default:
 - 'http://urltoogg'

base.json

 {
 "SONGS": {
 "default": [
 "http://urltoogg"
 }
 }
 }

Logging (base)

By default (from version 0.5.0) rotating logging is enabled by default but writing is disabled by default.
The settings bellow can be adjusted to meet your requirements.

base.py

LOGGING_WRITE_LOGS = True
LOGGING_ROTATE_LOGS = True
LOGGING_DIRECTORY = 'logs'

base.yaml

LOGGING_WRITE_LOGS: true
LOGGING_ROTATE_LOGS: true
LOGGING_DIRECTORY: 'logs'

base.json

{
 "LOGGING_WRITE_LOGS": true,
 "LOGGING_ROTATE_LOGS": true,
 "LOGGING_DIRECTORY": "logs"
}

Enabling apps (apps)

You can enable apps in the APPS setting. This is pretty simple and straight forward.
The order doesn’t make a difference when starting/loading PyPlanet.

apps.py

APPS = {
 'default': [
 'pyplanet.apps.contrib.admin',
 'pyplanet.apps.contrib.jukebox',
 'pyplanet.apps.contrib.karma',
 'pyplanet.apps.contrib.local_records',
 'pyplanet.apps.contrib.dedimania',
 'pyplanet.apps.contrib.players',
 'pyplanet.apps.contrib.info',
 'pyplanet.apps.contrib.mx',
 'pyplanet.apps.contrib.transactions',

 # New since 0.4.0:
 'pyplanet.apps.contrib.sector_times',
 'pyplanet.apps.contrib.dynamic_points',

 # New since 0.5.0:
 'pyplanet.apps.contrib.clock',
 'pyplanet.apps.contrib.best_cps',
 'pyplanet.apps.contrib.voting',

 # New since 0.6.0:
 'pyplanet.apps.contrib.queue',
 'pyplanet.apps.contrib.ads',
 'pyplanet.apps.contrib.music_server',

 # New since 0.8.0:
 'pyplanet.apps.contrib.funcmd',
],
}

apps.yaml

apps:
 default:
 - 'pyplanet.apps.contrib.admin'
 - 'pyplanet.apps.contrib.jukebox'
 - 'pyplanet.apps.contrib.karma'
 - 'pyplanet.apps.contrib.local_records'
 - 'pyplanet.apps.contrib.dedimania'
 - 'pyplanet.apps.contrib.players'
 - 'pyplanet.apps.contrib.info'
 - 'pyplanet.apps.contrib.mx'
 - 'pyplanet.apps.contrib.transactions'

 # New since 0.4.0:
 - 'pyplanet.apps.contrib.sector_times'
 - 'pyplanet.apps.contrib.dynamic_points'

 # New since 0.5.0:
 - 'pyplanet.apps.contrib.clock'
 - 'pyplanet.apps.contrib.best_cps'
 - 'pyplanet.apps.contrib.voting'

 # New since 0.6.0:
 - 'pyplanet.apps.contrib.queue'
 - 'pyplanet.apps.contrib.ads'
 - 'pyplanet.apps.contrib.music_server'

 # New since 0.8.0:
 - 'pyplanet.apps.contrib.funcmd

apps.json

{
 "APPS": {
 "default": [
 "pyplanet.apps.contrib.admin",
 "pyplanet.apps.contrib.jukebox",
 "pyplanet.apps.contrib.karma",
 "pyplanet.apps.contrib.local_records",
 "pyplanet.apps.contrib.dedimania",
 "pyplanet.apps.contrib.players",
 "pyplanet.apps.contrib.info",
 "pyplanet.apps.contrib.mx",
 "pyplanet.apps.contrib.transactions",

 "pyplanet.apps.contrib.live_rankings",
 "pyplanet.apps.contrib.sector_times",

 "pyplanet.apps.contrib.clock",
 "pyplanet.apps.contrib.best_cps",
 "pyplanet.apps.contrib.voting",

 "pyplanet.apps.contrib.queue",
 "pyplanet.apps.contrib.ads",
 "pyplanet.apps.contrib.music_server",

 "pyplanet.apps.contrib.funcmd"
]
 }
}

Note

When new contributed apps will come available, you have to manually enable it in your settings.
Please take a look at our Change Log for details on changes.

 Starting PyPlanet

Starting PyPlanet

Contents

	Starting PyPlanet

	Start and fork to PID file (Linux)

	Start/stop with Screen (Linux)

	Install SystemD Service (Linux)

	Start standalone and in foreground (Linux and Windows)

After following the instructions on how to install and configure PyPlanet you are
ready to start up the controller itself.

By default, PyPlanet will always run in the foreground. That’s why we have several steps to make PyPlanet run in the background
and as a service on your server. As a side-note we also have the screen method described. It’s a matter of preference and support.

Hint

If you use an virtual environment, make sure it’s activated. We will not show this in some instructions, but always
activate before starting PyPlanet.

Start and fork to PID file (Linux)

This is available from PyPlanet 0.5.0. With this feature you can start PyPlanet and let it detach itself and write a
so called PID file which contain the process ID of the detached process. This is only available on Linux systems.

1. Starting detached

Starting detached is as simple as it seems to be. Look at the starting command bellow and you will understand how to start
PyPlanet detached.

./manage.py start --detach --pid-file=pyplanet.pid

This way you can create your own startup scripts. You can terminate PyPlanet by using the following command:

kill -SIGTERM `cat pyplanet.pid`

Start/stop with Screen (Linux)

Screen is a feature on Linux distributions that makes it possible to start a virtual terminal window, and keep the terminal
open in the background for as long as required. You can watch or control the screen from multiple SSH sessions, making it ideal
for platforms that require multiuser access to the servers while not require the root privileges required for the services.

1. Installation of screen

To use Screen for PyPlanet you have to install it for your OS.

Debian / Ubuntu::

sudo apt-get install screen

Fedora / RHEL:

sudo yum install screen

2. Start a new screen

You can start a new screen session with this command. Remember that you only have to do this once for starting a new session.
After executing this command you will create and directly attach to this screen instance.

screen -S name-of-screen

3. Open a screen

If you have followed step 2, please skip this step, this step is meant for so called ‘reattaching’ to the screen.

To list the screens on this user account use: screen -ls.

To reattach to a deattached screen, use: screen -r name-of-screen.
If you can’t attach, you might have another session attached or need to use the numeric screen id’s from the list command.

To reattach to an already attached screen, use: screen -x name-of-screen.
Again, if this fails, try the numeric id from the list command.

From now you are in the virtual terminal session, when you accidentally disconnect your SSH tunnel, the process inside the screen will still
be active!

4. Start PyPlanet

Make sure you activated your virtual environment first.

Head to your projects folder where the file manage.py is located in your terminal and execute the following command:

./manage.py start

This will start your PyPlanet project environment(s).

5. Leaving the screen

To leave the screen the right way (deattach) you have to do the following keyboard combination:

CTRL+A then release, and press D.

If you want to exit and destroy the screen, just cancel all programs inside, and type logout or use CTRL+D.

Install SystemD Service (Linux)

SystemD is a pretty new init system that is included in the newest distributions.
For example, Ubuntu 16.04 and higher, Debian 8 and higher make use of SystemD.
SystemD will replace the old sysvinit system and make it easy to start/stop and automatically restart services (including during the OS boot)

Warning

This method is slightly harder, and require you to have root rights al the time (even to (re)start).

This also requires you to use PyEnv.

1. Installing the service

Head towards your systemd configuration folder by executing the following command(s):

Debian / Ubuntu / Fedora / RHEL / Most other Linux distros::

cd /etc/systemd/system

2. Determinate paths

First of all, we have to know the following paths:

	Full path to the PyPlanet executable.

	Full path to the project root.

	The user and group you want to run PyPlanet under.

	Your service name. (in our examples pyplanet.service and pyplanet)

2.1. Full PyPlanet path

You can check the full path to the pyplanet cli interface by executing this: whereis pyplanet.
The outcome is the path, in our example it’s /home/toffe/.pyenv/shims/pyplanet.

2.2. Full project path

Where is the root of the PyPlanet project located, this is the folder where the settings folder and the manage.py file exist.
In our example it’s /path/to/your/pyplanet/project.

2.3. Running user and group

It’s important to not run as root! That’s why you want to use a secondary user on your system.

Find out the current user and group name with the following command: echo id (don’t execute with sudo!).

This will output something like this:

uid=1000(toffe) gid=1000(toffe) groups=1000(toffe),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),113(lpadmin),128(sambashare),133(wireshark),140(kvm),141(libvirtd),998(bumblebee),999(docker)

We only need two items in there, and its the value inside of the brackets of the first item (uid=x), in our case toffe which is the user.

And the second value is the group, just after the gid=x, and inside the brackets, in our case also toffe.

3. Create the service definition file

After going to the right location you have to create a new file called pyplanet.service. You can rename it as you want!

sudo nano pyplanet.service
Or use your os editor, like vim or pico. Make sure you are still in the folder from step 1!

After opening the editor, paste the contents bellow and change the contents according the steps above.

[Unit]
After=syslog.target network.target

[Service]
WorkingDirectory=/path/to/your/pyplanet/project
Environment="PYTHONPATH=/path/to/your/pyplanet/project"
ExecStart=/home/toffe/.pyenv/shims/pyplanet start --settings=settings
SyslogIdentifier=pyplanet

Restart=always
StandardOutput=syslog
StandardError=syslog
User=toffe
Group=toffe

[Install]
WantedBy=multi-user.target

After changing the contents, save the file and continue to the next step.

4. Reload systemd

After installing the new service file you have to let systemd know that you changed something. Do this with the following command:

sudo systemctl daemon-reload

5. Starting/stopping PyPlanet

From now you can start, stop and restart your controller with the following commands: (the pyplanet name is your service file name).

systemctl start pyplanet
systemctl stop pyplanet
systemctl restart pyplanet

To view the logs of the PyPlanet instance, type one of this commands:

journalctl --unit pyplanet.service -xe
journalctl --unit pyplanet.service -f

6. Starting at boot

Activate the service to have it started when your machine starts.

systemctl enable pyplanet

Start standalone and in foreground (Linux and Windows)

Warning

When you are using SSH to remotely access the server running PyPlanet, this starting option should only be used while testing your server. The moment you close the SSH terminal window, your PyPlanet instance will shutdown (crash). Use one of the methods above, if you want to run PyPlanet without having the terminal window open at all times.

1. Go to your project folder

Make sure you change directory to your project root (contains the manage.py file).

cd /my/project/location

2. Activate virtual environment

Make sure you activated your virtual environment.

Linux / Mac OS
pyenv activate pyplanet

Windows
env\Scripts\activate.bat

Tip

Don’t know how to setup the environment exactly? Head to Windows or Linux guides.

3. Start PyPlanet

Linux:
./manage.py start

Windows
python manage.py start

This will start your PyPlanet setup.

 Upgrading PyPlanet

Upgrading PyPlanet

Upgrading an existing installation isn’t difficult at all. The only thing you really need to be careful about is the
breaking changes.

Before upgrading, please check your existing version, and check the Change Log Document.

Since 0.6.0 you have two methods of upgrading. The in-game method and the manual PIP method.
We strongly advice you to use the manual PIP method because the in-game upgrade can be unstable with big releases!

Note

We assume you installed PyPlanet with PyPi and initiated your project folder with init_project.
If you installed directly from Git, this document may not be suited for you.

Warning

When using the executable method (downloaded from the GitHub releases page) you will have to redownload and replace the
binary file instead of these steps! (Executable currently not released anymore).

In-game upgrade method

To use this method your current version needs to be 0.6.0 or higher. You can use the following command to execute the upgrade.
You can also select a specific version (for example beta or rc) with the command.

//upgrade
-- or --
//upgrade 0.6.0-rc1

PyPlanet will reboot when the installation is complete. You might want to edit the apps.py to activate the new apps.
On the configuration page you can always find the latest apps entries.

Warning

This method can be unstable. It’s hard to fully adjust to your installation method and environment.
We recommend making a backup of your installation, or have the knowledge of restoring or recreating
the virtualenv or installation!

Manual PIP method

1. Check requirements.txt

In your project root you will find a file called requirements.txt. This file is the input of the pip manager in the
next commands. So it needs to be well maintained.

By default you will see something like this:

pyplanet>=0.0.1,<1.0.0

This will tell pip to install a PyPlanet version above 0.0.1, but under 1.0.0. This way you will prevent sudden breaking
changes that may occur in big new releases, or breaking changes that were introduced to a major Maniaplanet update.

If you want to upgrade to a newer major version, for example 1.2.0 to 2.0.0. you have to change these numbers here. If not, continue
to the next step

2. Activate env

If you use virtualenv or pyenv it’s now time to activate your virtual environment. Do so with the commands.

Linux
source env/bin/activate

PyEnv
pyenv activate pyplanet

Windows
env\Scripts\Activate.bat

3. Upgrade PyPlanet core

Now you can run the pip command that will upgrade your installation.

pip install -r requirements.txt --upgrade

Warning

You may find errors during installation, make sure you have openssl, gcc, python development installed on your os!
See the installation manual on how to install this.

4. Upgrade settings

See the changelog for new or updated settings and apply the changes now.

5. Upgrade apps setting

It can be possible that we introduced new apps in the update. You will find this in the changelog, and all newest apps
will always be provided in the documentation.

On the configuration page you will always find the latest apps settings entries.

6. Start PyPlanet

At the next start it will apply any database migrations automatically.

 Migrating from old controller

Migrating from old controller

Migrating from Xaseco2

We provide a basic convert procedure to convert your database from XAseco2 to PyPlanet. You will keep these data:

	Player basic information.

	Driven times by players.

	Map basic information.

	Local records. (records table).

	Karma.

As we don’t have anything yet that can hold statistics except the times table (rs_times), we cannot convert these unfortunately.
We will soon have a store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format xaseco2 --source-db-username root --source-db-name xaseco2

Migrating from UAseco

We provide a basic convert procedure to convert your database from UAseco to PyPlanet. You will keep these data:

	Player basic information.

	Driven times by players.

	Map basic information.

	Local records. (uaseco_records table).

	Karma.

As we don’t have anything yet that can hold statistics except the times table (uaseco_times), we cannot convert these unfortunately.
We will soon have a store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format uaseco --source-db-username root --source-db-name uaseco

Warning

The UAseco converter is new since version 0.4.4.

Note

For additional arguments, see python manage.py db_convert –help

Migrating from eXpansion

We provide a basic convert procedure to convert your database from eXpansion to PyPlanet. You will keep these data:

	Player basic information.

	Map basic information.

	Local records.

	Karma.

As we don’t have anything yet that can hold statistics and the architecture of those statistics is very different in eXpansion, we cannot convert these unfortunately.
We will soon have a store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format expansion --source-db-username root --source-db-name expansion

Warning

The eXpansion converter is new since version 0.5.0.
This has not yet been fully tested with several installations. Make sure your source is using utf8 or utf8mb4_unicode collate.

Note

For additional arguments, see python manage.py db_convert –help

Migrating from ManiaControl

We provide a basic convert procedure to convert your database from ManiaControl to PyPlanet. You will keep these data:

	Player basic information.

	Map basic information.

	Local records. (uaseco_records table).

	Karma.

As we don’t have anything yet that can hold statistics, we cannot convert these unfortunately.
We will soon have a store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format maniacontrol --source-db-username root --source-db-name maniacontrol

Warning

The ManiaControl converter is new since version 0.4.5

Note

For additional arguments, see python manage.py db_convert –help

 How To’s and troubleshooting

How To’s and troubleshooting

	Correct Database Collation (MySQL)

	MySQL Complaining about large indexes (1000 bytes)

 Correct Database Collation (MySQL)

Correct Database Collation (MySQL)

Because of the Emoji and other symbols used in MP4 and later you are required to have the utf8mb4_unicode_ci collation
for databases, tables and columns in MySQL.

If you didn’t set it right at the first start you will get a message when starting the controller.
To correct this you can execute the following query. You have to change one part with the database name:

USE information_schema;

SELECT concat("ALTER DATABASE `",table_schema,
 "` CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci;") as _sql
 FROM `TABLES`
 WHERE table_schema like "pyplanet"
 GROUP BY table_schema;

SELECT concat("ALTER TABLE `",table_schema,"`.`",table_name,
 "` CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;") as _sql
 FROM `TABLES`
 WHERE table_schema like "pyplanet"
 GROUP BY table_schema, table_name;

In this code-snippet, pyplanet is the database name. Make sure you change it to your database name.

The results you will get are queries that you need to execute one by one. Please make sure you create a backup before
executing the queries.

 MySQL Complaining about large indexes (1000 bytes)

MySQL Complaining about large indexes (1000 bytes)

Because we use utf8mb4_unicode_ci characters can take more bytes and will reach the limits of the MySQL database engine.

For PyPlanet it’s required to have your database storage engine set to InnoDB!
It’s currently an issue that we can’t provide the storage engine when creating tables. This makes it kinda frustrating
and the workaround for now is to set your MySQL Servers default storage engine to InnoDB. To do this, find your my.ini in your
MySQL installation, in most cases this is located in the installation directory on Windows, or somewhere in /etc/mysql or the file /etc/my.ini on Linux
systems.

Please find the following text in the my.ini file default-storage-engine.
When you can find the line, change it so it looks like the snippet given bellow.
If you can’t find the entry in the file, add it to the [mysqld] section, and make sure it looks like the snippet bellow.

default-storage-engine=InnoDB

Warning

We are looking for a better way to solve this issue, but we are limited to the Peewee library for creating the tables.

 Admin

Admin

Information

	Name:
	pyplanet.apps.contrib.admin

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, ShootMania

Features

This app includes the main admin features PyPlanet has to offer.
It’s features can be seperated in to these three areas:

	Maps: skip, restart

	Players: mute, kick, ban

	Server: set server/spectator password

Commands

PyPlanet

Reboot PyPlanet Pool Process

	Command:
	//reboot

	Parameters:
	None.

	Functionality:
	Reboot pyplanet pool process.

	Required permission:
	admin:reboot, requires admin level 3.

Toggle the admin toolbar personally

	Command:
	//toolbar

	Parameters:
	None.

	Functionality:
	Toggle the visibility of the admin toolbar personally.

	Required permission:
	at least admin level 1.

Maps

Skip map

	Command:
	//next / //skip

	Parameters:
	None.

	Functionality:
	Skips to the next map.

	Required permission:
	admin:next, requires admin level 1.

Restart map

	Command:
	//restart / //res / //rs

	Parameters:
	None.

	Functionality:
	Restarts the current map.

	Required permission:
	admin:restart, requires admin level 1.

Replay map

	Command:
	//replay

	Parameters:
	None.

	Functionality:
	Queue the current map to be replayed

	Required permission:
	admin:replay, requires admin level 1.

Add Local map

	Command:
	//add local

	Parameters:
	
	Local file name or path.

	Functionality:
	Add map from local server disk.

	Required permission:
	admin:add_local, requires admin level 2.

Open Map browser

	Command:
	//localmaps

	Parameters:
	None.

	Functionality:
	Opens a browser which can be used to add local maps to the server.

	Required permission:
	admin:localmaps, requires admin level 3.

Write Map list

	Command:
	//writemaplist / //wml

	Parameters:
	
	Optional match settings file. Will use the file from your settings if not provided!

	Functionality:
	Write maplist to match settings file.

	Required permission:
	admin:write_map_list, requires admin level 2.

Read Map list

	Command:
	//readmaplist / //rml

	Parameters:
	
	Match settings file.

	Functionality:
	Read maplist from the match settings file.

	Required permission:
	admin:read_map_list, requires admin level 2.

Shuffle Map list

	Command:
	//shuffle

	Parameters:
	
	

	Functionality:
	Shuffle and reload map list from disk!

	Required permission:
	admin:shuffle, requires admin level 2.

Remove Map

	Command:
	//remove

	Parameters:
	
	Map number given, the ID column from database. If not given, the current map will be removed!

	Functionality:
	Remove map from loadedd map list. (Doesn’t write the maplist to disk!). This command doesn’t remove the actual map file!

	Required permission:
	admin:remove_map, requires admin level 2.

Erase Map

	Command:
	//erase

	Parameters:
	
	Map number given, the ID column from database. If not given, the current map will be removed!

	Functionality:
	Remove map from loadedd map list. (Doesn’t write the maplist to disk!). Also removes the map file from the disk!

	Required permission:
	admin:remove_map, requires admin level 2.

Extend TA limit

	Command:
	//extend

	Parameters:
	
	Time in seconds to extend the timer with, ignore this parameter to double the time.

	Functionality:
	Extend the TA limit temporary with given seconds or double the current TA limit.

	Required permission:
	admin:extend, requires admin level 1.

Players

Force player to spec

	Command:
	//forcespec

	Parameters:
	
	Player login.

	Functionality:
	Force player into spectator.

	Required permission:
	admin:force_spec, requires admin level 1.

Force player to player

	Command:
	//forceplayer

	Parameters:
	
	Player login.

	Functionality:
	Force player into player slot.

	Required permission:
	admin:force_player, requires admin level 1.

Force player to team

	Command:
	//forceteam

	Parameters:
	
	Player login.

	Team identifier (0/blue or 1/red)

	Functionality:
	Force player into a specific team.

	Required permission:
	admin:force_team, requires admin level 1.

Switch player to team

	Command:
	//switchteam

	Parameters:
	
	Player login.

	Functionality:
	Switches the player into the other team.

	Required permission:
	admin:switch_team, requires admin level 1.

	Command:
	//warn / //warning

	Parameters:
	
	Player login.

	Functionality:
	Displays a warning message in chat for the player

	Required permission:
	admin:warn, requires admin level 1.

Mute player

	Command:
	//mute / //ignore

	Parameters:
	
	Player login.

	Functionality:
	Mutes the player, messages won’t appear in server chat.

	Required permission:
	admin:ignore, requires admin level 1.

Unmute player

	Command:
	//unmute / //unignore

	Parameters:
	
	Player login.

	Functionality:
	Unmutes the player, messages will appear in server chat again.

	Required permission:
	admin:unignore, requires admin level 1.

Kick player

	Command:
	//kick

	Parameters:
	
	Player login.

	Functionality:
	Kicks the player from the server.

	Required permission:
	admin:kick, requires admin level 1.

Ban player

	Command:
	//ban

	Parameters:
	
	Player login.

	Functionality:
	Bans the player from the server.

	Required permission:
	admin:ban, requires admin level 2.

Unban player

	Command:
	//unban

	Parameters:
	
	Player login.

	Functionality:
	Unbans the player from the server.

	Required permission:
	admin:unban, requires admin level 2.

Change user admin level

	Command:
	//level

	Parameters:
	
	Player login.

	(Optional) Level: 0 = player, 1 = operator, 2 = admin, 3 = master admin. Leave empty to remove level (0).

	Functionality:
	Changes the admin permission level of the player.

	Required permission:
	admin:manage_admins, requires admin level 2.

Game Flow

Force round to end

	Command:
	//endround

	Parameters:
	None

	Functionality:
	Force the trackmania round to an end.

	Required permission:
	admin:end_round, requires admin level 2.

Force WarmUp round to end

	Command:
	//endwuround

	Parameters:
	None

	Functionality:
	Force the trackmania WarmUp round to an end.

	Required permission:
	admin:end_round, requires admin level 2.

Force WarmUp to an end

	Command:
	//endwu

	Parameters:
	None

	Functionality:
	Force the whole WarmUp to an end.

	Required permission:
	admin:end_round, requires admin level 2.

Set rounds points (Points repartition)

	Command:
	//pointsrepartition / //pointsrep

	Parameters:
	
	Points per place, top to bottom, separated with either spaces or commas.

	Functionality:
	Set the rounds points (points per player and place it ends in an round).

	Required permission:
	admin:points_repartition, requires admin level 2.

Write Blacklist

	Command:
	//writeblacklist / //wbl

	Parameters:
	
	Optional blacklist file. Will use the file from your settings if not provided!

	Functionality:
	Write blacklist to file.

	Required permission:
	admin:write_blacklist, requires admin level 3.

Read Blacklist

	Command:
	//readblacklist / //rbl

	Parameters:
	
	Blacklist file (optional).

	Functionality:
	Read blacklist from the file given or the one in the settings file.

	Required permission:
	admin:read_blacklist, requires admin level 3.

Add Guest

	Command:
	//addguest

	Parameters:
	
	Player login.

	Functionality:
	Add guest to guestlist

	Required permission:
	admin:addguest, requires admin level 3.

Remove Guest

	Command:
	//removeguest

	Parameters:
	
	Player login.

	Functionality:
	Remove guest from guestlist

	Required permission:
	admin:removeguest, requires admin level 3.

Write Guestlist

	Command:
	//writeguestlist / //wgl

	Parameters:
	
	Optional guestlist file. Will use the file from your settings if not provided!

	Functionality:
	Write guestlist to file.

	Required permission:
	admin:write_guestlist, requires admin level 3.

Read Guestlist

	Command:
	//readguestlist / //rgl

	Parameters:
	
	Guestlist file (optional).

	Functionality:
	Read guestlist from the file given or the one in the settings file.

	Required permission:
	admin:read_guestlist, requires admin level 3.

Server

Set server name

	Command:
	//servername

	Parameters:
	
	Server name.

	Functionality:
	Changes the server name.

	Required permission:
	admin:servername, requires admin level 2.

Set game mode

	Command:
	//mode

	Parameters:
	
	Game mode ‘ta’, ‘laps’, ‘rounds’, ‘cup’ or any script name (e.g. ‘Rounds.Script.txt’)

	Functionality:
	Changes the server game mode script.

	Required permission:
	admin:mode, requires admin level 2.

Get/set game mode settings

	Command:
	//modesettings

	Parameters:
	None, or:
* Setting name
* New setting value

	Functionality:
	Displays a list of current mode settings (no parameters) or changes a setting according with the given parameters.

	Required permission:
	admin:mode, requires admin level 2.

Set server password

	Command:
	//setpassword / //srvpass

	Parameters:
	
	Server password (none or empty for no password).

	Functionality:
	Changes the server password.

	Required permission:
	admin:password, requires admin level 2.

Set server password

	Command:
	//setspecpassword / //spectpass

	Parameters:
	
	Spectator password (none or empty for no password).

	Functionality:
	Changes the spectator password.

	Required permission:
	admin:password, requires admin level 2.

Cancel CallVote

	Command:
	//cancelcallvote / //cancelcall

	Parameters:
	None

	Functionality:
	Cancel a current started call vote.

	Required permission:
	admin:callvoting, requires admin level 1.

Signal handlers

None.

 Advertisements

Advertisements

Information

	Name:
	pyplanet.apps.contrib.ads

	Depends on:
	
	

	Game:
	All

Features

This app provides buttons, banners and other advertisements assets. For example it shows a Discord logo or a PayPal button.
The app has the following features:
- Show Discord join button.
- Show how many users online in Discord.
- Show PayPal donate button.
- Random messages at specific times.

Setup Discord:

	Get your discord join link and make sure it does not expire.

	Get your discord server ID. (you might need to enable developer settings)

	Enable the widget of your discord server in the server settings.

	Start PyPlanet with this app enabled.

	Type //settings and edit two discord related fields (join URL and ID)

Setup PayPal:

	Create the PayPal donation link for you server account

	Start PyPlanet with this app enabled.

	Type //settings and fill the PayPal related field (Donation URL)

Random Message:

	Enter the random messages by editing //settings (find the random messages entry).
Every line represents one message, you can use any formatting in the messages!

	Optionally edit the random messages interval

Commands

Display Discord Server Info

	Command:
	/discord

	Parameters:
	None.

	Functionality:
	Displays the number of users and bots on the server.

	Required permission:
	None.

Display PayPal Link

	Command:
	/paypal

	Parameters:
	None.

	Functionality:
	Display the PayPal link in chat.

	Required permission:
	None.

Signal handlers

Player connect

Signal
pyplanet.apps.core.maniaplanet.callbacks.player.player_connect
Functionality:

Displaying widgets

 Best CPs

Best CPs

Information

	Name:
	pyplanet.apps.contrib.best_cps

	Depends on:
	core.maniaplanet

	Game:
	Trackmania

	Mode:
	TimeAttack

Features

This app shows the best driven time at each CP.

	Quick display on the top of the UI for the first 18 CPs (3 rows)

	Click on header to open up list view for all CPs

Installation

Just add this line to your apps.py file:

APPS = {
 'default': [
 '...',
 'pyplanet.apps.contrib.best_cps', # Add this line.
 '...',
]
}

Commands

	

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Removes CP times from last round.

Player waypoint

	Signal:
	pyplanet.apps.core.trackmania.callbacks.waypoint

	Functionality:
	Process and update widget.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Display widget.

Map End

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_start__end

	Functionality:
	Update the widget (for map restarts)

 Clock

Clock

Information

	Name:
	pyplanet.apps.contrib.clock

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, Shootmania

Features

This app shows a digital clock displaying the current time on the UI.
This widget is using ManiaScript.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Displays the clock.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Displays the clock widget for the connecting player.

 Dedimania Records

Dedimania Records

Information

	Name:
	pyplanet.apps.contrib.dedimania

	Depends on:
	core.maniaplanet

	Game:
	Trackmania

	Mode:
	TimeAttack + Rounds

Features

This app enables players to have their map records stored at Dedimania.net. Displays widget + list for records.

Setup:

	Make sure you generate a Dedimania Code for your server.

	Start PyPlanet with this app enabled.

	Type //settings and edit the two settings for dedimania, paste the code in the code entry.

	Save and restart PyPlanet.

Commands

Compare checkpoints

	Command:
	/dedicps [record nr to compare with]

	Parameters:
	
	Optional record number to compare with, will compare with record nr 1 if none is given.

	Functionality:
	Displays a list with checkpoint times of the record and your dedimania record showing
the exact differences per checkpoint.

	Required permission:
	None.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Retrieves records for the new map and updates the widget.

Map start

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_start

	Functionality:
	Used to handle map restarts with saving of dedimania records.

Map end

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_end

	Functionality:
	Used to save dedimania records.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Displaying widget + sending dedimania request.

Player disconnect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Sending dedimania request.

Player finish

	Signal:
	pyplanet.apps.core.trackmania.finish

	Functionality:
	Registers new records.

 Dynamic Points

Dynamic Points

Information

	Name:
	pyplanet.apps.contrib.dynamic_points

	Depends on:
	core.maniaplanet

	Game:
	Shootmania

Features

This app enables the dynamic points limit in Shootmania Royal. Setup with the //settings command!

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Apply the new limit if settings allow us to do.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Adjust the limit

Player disconnect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_disconnect

	Functionality:
	Adjust the limit

Player info change

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_info_changed

	Functionality:
	Adjust the limit

 Dynatime

Dynatime

Information

	Name:
	pyplanet.apps.contrib.dynatime

	Depends on:
	core.maniaplanet

	Game:
	TrackMania

Features

Dynamically set time limit for each map based on the map’s bronze time.

Commands

None.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Updates time limit and announces change to the players.

 Jukebox

Jukebox

Information

	Name:
	pyplanet.apps.contrib.jukebox

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, Shootmania

Features

This app enables players to schedule maps from the maplist to be played next.

Commands

Display maplist

	Command:
	/list

	Parameters:
	None or search string.

	Functionality:
	Displays a list of maps currently on the server.
First parameter added to command will search the list accordingly.

	Required permission:
	None.

Display jukebox list

	Command:
	/jukebox list / /jukebox display

	Parameters:
	None.

	Functionality:
	Displays a list of maps currently in the jukebox.

	Required permission:
	None.

Drop jukeboxed map

	Command:
	/jukebox drop

	Parameters:
	None.

	Functionality:
	Drops the last (if any) map juked by the player from the jukebox.

	Required permission:
	None.

Clear jukebox

	Command:
	/admin clearjukebox / /admin cjb / /jukebox clear

	Parameters:
	None.

	Functionality:
	Clears the current jukebox list.

	Required permission:
	jukebox:clear, requires admin level 1.

Signal handlers

Podium start

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.flow.podium_start

	Functionality:
	Sets the next map to be the first one in the jukebox.

 Karma

Karma

Information

	Name:
	pyplanet.apps.contrib.karma

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, Shootmania

Features

This app enables players to vote on maps and provides a karma widget.

Commands

Display votes

	Command:
	/whokarma

	Parameters:
	None.

	Functionality:
	Displays a list of votes cast on the current map.

	Required permission:
	None.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Retrieves votes for the new map and updates the karma widget.

Player chat

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_chat

	Functionality:
	Handles chat-based voting (++ or --).

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Displays the karma widget for the connecting player.

 Live Rankings

Live Rankings

Information

	Name:
	pyplanet.apps.contrib.live_rankings

	Depends on:
	core.maniaplanet

	Game:
	Trackmania

Features

This app enables the live rankings widget for the game modes:

	Laps (Live cp statistics).

	Rounds (Match sum of points).

	TimeAttack (Top times of players).

	Cup & Team (Points gathered).

Installation

Just add this line to your apps.py file:

APPS = {
 'default': [
 '...',
 'pyplanet.apps.contrib.live_rankings', # Add this line.
 '...',
]
}

Commands

	

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_start

	Functionality:
	Clears rankings and widget

Player finish

	Signal:
	pyplanet.apps.core.trackmania.callbacks.finish

	Functionality:
	Process and update widget.

Player waypoint

	Signal:
	pyplanet.apps.core.trackmania.callbacks.waypoint

	Functionality:
	Process and update widget.

Player give up

	Signal:
	pyplanet.apps.core.trackmania.callbacks.give_up

	Functionality:
	Set the time to DNF in specific modes.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Display widget.

Scores

	Signal:
	pyplanet.apps.core.trackmania.callbacks.scores

	Functionality:
	Update the widget with the driven scores.

 Local Records

Local Records

Information

	Name:
	pyplanet.apps.contrib.local_records

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next

Features

This app enables players to have their map records stored and displays the records in a widget.

Commands

Display local records

	Command:
	/records

	Parameters:
	None.

	Functionality:
	Displays a list of local records on the current map.

	Required permission:
	None.

Compare checkpoints

	Command:
	/localcps [record nr to compare with]

	Parameters:
	
	Optional record number to compare with, will compare with record nr 1 if none is given.

	Functionality:
	Displays a list with checkpoint times of the record and your local record showing
the exact differences per checkpoint.

	Required permission:
	None.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Retrieves records for the new map and updates the widget.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Displays the records widget for the connecting player.

Player finish

	Signal:
	pyplanet.apps.core.trackmania.finish

	Functionality:
	Registers new records.

 Map Info

Map Info

Information

	Name:
	pyplanet.apps.contrib.mapinfo

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, Shootmania

Features

Displays basic map information in widget.

Commands

None.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Updates widget with new map information.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Displays the map info widget for the connecting player.

 Music Server

Music Server

Information

	Name:
	pyplanet.apps.contrib.music_server

	Depends on:
	
	

	Game:
	All

Features

This app provides the ability to play your own music for all the players in the server.

Setup:

Add URLs to the music files you want to play your settings module (base.py) or directory (base.json / base.yaml)
in the SONGS = [] section. The files must be in the .ogg format for maniaplanet to be able to play them.

Commands

Display music list

	Command:
	/songlist or /musiclist

	Parameters:
	None.

	Functionality:
	Displays the list of all available songs. Click songs to put them into the playlist.

	Required permission:
	None.

Display Playlist

	Command:
	/playlist

	Parameters:
	None.

	Functionality:
	Display the playlist. Click songs to drop them from the playlist. Users can only drop the songs the juked themselves.

	Required permission:
	None.

Current Song

	Command:
	/song

	Parameters:
	None.

	Functionality:
	Prints the Title and Artist of the song currently playing to the chat.

	Required permission:
	None.

Play Song

	Command:
	//play

	Parameters:
	songname URL to music file to be played next.

	Functionality:
	Puts the song into the songlist. It will be gone from it on next restart of PyPlanet.

	Required permission:
	requires admin level 1

Signal handlers

Map End

Signal
pyplanet.apps.core.maniaplanet.callbacks.map.map_end
Functionality:

Queue the next song.

 ManiaExchange / TrackmaniaExchange

ManiaExchange / TrackmaniaExchange

Information

	Name:
	pyplanet.apps.contrib.mx

	Depends on:
	core.maniaplanet

	Game:
	Trackmania / Trackmania Next / Shootmania

Features

Adding maps from ManiaExchange or TrackmaniaExchange (depending on the game).
The prefix of the commands can be either mx or tmx depending on your game. For Maniaplanet games it will
be mx.

Commands

Add map(s) from MX/TMX

	Command:
	//add mx or //mx add or //tmx add

	Parameters:
	
	ManiaExchange/TrackmaniaExchange ID(s). One or more with space between it.

	Functionality:
	Adding maps from ManiaExchange/TrackmaniaExchange to the server.

	Required permission:
	mx:add_remote, requires admin level 3.

Search maps on MX/TMX

	Command:
	//mx search or //tmx search

	Parameters:
	
	

	Functionality:
	Search/browse for maps on MX/TMX.

	Required permission:
	mx:add_remote, requires admin level 3.

Add mappack from MX/TMX

	Command:
	//mxpack add or //tmxpack add

	Parameters:
	
	ManiaExchange/TrackmaniaExchange Pack ID.

	Functionality:
	Adding maps form a specific mappack on ManiaExchange/TrackmaniaExchange to the server.

	Required permission:
	mx:add_remote, requires admin level 3.

Search mappacks on MX/TMX

	Command:
	//mxpack search or //tmxpack search

	Parameters:
	
	

	Functionality:
	Search/browse for mappacks on MX/TMX.

	Required permission:
	mx:add_remote, requires admin level 3.

Check maplist for updates

	Command:
	//mx status or //tmx status

	Parameters:
	
	

	Functionality:
	Check for updated maps on MX/TMX.

	Required permission:
	mx:add_remote, requires admin level 3.

Get current map info

	Command:
	/mx info or /tmx info

	Parameters:
	
	

	Functionality:
	Get information about the current map from the MX/TMX database.

	Required permission:
	
	

 Players

Players

Information

	Name:
	pyplanet.apps.contrib.players

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, Shootmania

Features

This app provides the playerlist UI.

Commands

Display playerlist

	Command:
	/players

	Parameters:
	None.

	Functionality:
	Displays a list of players currently on the server.

	Required permission:
	None.

Show last online date of player

	Command:
	/laston / /lastseen

	Parameters:
	
	Login of the player.

	Functionality:
	Display the last date and time the user has been seen on the server.

	Required permission:
	None.

Signal handlers

None.

 Waiting Queue

Waiting Queue

Information

	Name:
	pyplanet.apps.contrib.queue

	Depends on:
	core.maniaplanet

	Game:
	Trackmania or Shootmania

	Mode:
	Any

Features

This app enables the waiting queue for crowded servers. Players should use the waiting queue on full servers
and will be in a queue where the waiting is fair for all players.

Warning

This app is new in 0.6.0 and is still in BETA. Unexpected behaviour can be expected, please post any issues
to our GitHub project.

Commands

Show queue list

	Command:
	/queue

	Parameters:
	
	

	Functionality:
	Get the list of the current queue.

	Required permission:
	
	

Clear queue

	Command:
	//queue clear

	Parameters:
	
	

	Functionality:
	Clear the queue (unqueue all spectators).

	Required permission:
	
	queue:manage_queue (level 2 by default)

Shuffle queue

	Command:
	//queue shuffle

	Parameters:
	
	

	Functionality:
	Shuffle the queue (randomly)

	Required permission:
	
	queue:manage_queue (level 2 by default)

Signal handlers

Player Info Change

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_info_changed

	Functionality:
	Used to force the release of the player slot when going to spectator

Player enters player slot

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_player_slot

	Functionality:
	Update all views

Player enters spectator slot

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_spectator_slot

	Functionality:
	Update all views

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	When server is full or queue is filled, force to spectator and show message in the chat.

Player disconnect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Remove player from queue if in, clear the data.

 Sector Times

Sector Times

Information

	Name:
	pyplanet.apps.contrib.sector_times

	Depends on:
	core.maniaplanet

	Game:
	Trackmania

Features

This app enables comparing the sector times against your best time driven ever (local or dedi record, or the current session best record).
This widget is instant updating and using ManiaScript.

This app also provides a gear indicator for Stadium based titles. This is enabled by default, you can disable this with //settings.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

	Functionality:
	Retrieves records for the new map and updates the widget.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Displays the records widget for the connecting player.

 Transactions

Transactions

Activate with adding 'pyplanet.apps.contrib.transactions.app.Transactions' to your apps.py

Information

	Name:
	pyplanet.apps.contrib.transactions

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Shootmania

Features

Donate, show planets on server and payout players.
Also shows a widget, change when and if you want to display this with settings in //settings.

Commands

Donate

	Command:
	/donate

	Parameters:
	
	Amount of planets.

	Functionality:
	Donate planets to the server.

	Required permission:
	
	

Get amount of planets on server

	Command:
	//planets

	Parameters:
	None

	Functionality:
	Get planet

	Required permission:
	admin:planets, requires admin level 3.

Pay planets to player

	Command:
	//pay

	Parameters:
	
	Player login

	Amount of planets

	Functionality:
	Pay planets to player.

	Required permission:
	admin:pay, requires admin level 3.

Signal handlers

Map begin

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.other.bill_updated

	Functionality:
	Update bill signal

 Voting

Voting

Information

	Name:
	pyplanet.apps.contrib.voting

	Depends on:
	core.maniaplanet

	Game:
	Trackmania, Trackmania Next, Shootmania

Features

This app provides chat-based voting for your players.

Commands

Replay Vote

	Command:
	/replay

	Parameters:
	None.

	Functionality:
	Initiate replay vote.

	Required permission:
	None.

Skip Vote

	Command:
	/skip

	Parameters:
	None.

	Functionality:
	Initiate skip vote.

	Required permission:
	None.

Restart Vote

	Command:
	/restart

	Parameters:
	None.

	Functionality:
	Initiate instant-restart vote.

	Required permission:
	None.

Extend TimeAttack Time

	Command:
	/extend

	Parameters:
	None.

	Functionality:
	Initiate time extend vote.

	Required permission:
	None.

Vote Yes

	Command:
	/y

	Parameters:
	None.

	Functionality:
	Vote yes, you can also use F5 to vote yes.

	Required permission:
	None.

Vote No

	Command:
	/n

	Parameters:
	None.

	Functionality:
	Vote no, you can also use F6 to vote no.

	Required permission:
	None.

Cancel Vote

	Command:
	//cancel

	Parameters:
	None.

	Functionality:
	Cancel current chat-based vote.

	Required permission:
	voting:cancel, requires admin level 1.

Signal handlers

None.

 Fun Commands

Fun Commands

Information

	Name:
	pyplanet.apps.contrib.funcmd

	Depends on:
	core.maniaplanet

	Game:
	
	

Features

This app enables some commands for fun interactive chatting with the players.
By default, also the Emoji Toolbar is enabled, you can disable this in //settings.

Commands

Boot Me

	Command:
	/bootme

	Parameters:
	None

	Functionality:
	Send message and boot yourself from the server (kick).

	Required permission:
	None.

Rage Quit

	Command:
	/rq or /ragequit

	Parameters:
	None

	Functionality:
	Ragequit from the server (kick).

	Required permission:
	None.

AFK

	Command:
	/afk

	Parameters:
	None

	Functionality:
	Set yourself as AFK (spectator).

	Required permission:
	None.

Good Game

	Command:
	/gg

	Parameters:
	None

	Functionality:
	Send Good Game to all players

	Required permission:
	None.

Nice One

	Command:
	/n1

	Parameters:
	None

	Functionality:
	Send Nice One to all players

	Required permission:
	None.

Nice Try/Nice Time

	Command:
	/nt

	Parameters:
	None

	Functionality:
	Send Nice Try or Nice Time to all players

	Required permission:
	None.

Nice Shot

	Command:
	/ns

	Parameters:
	None

	Functionality:
	Send Nice Shot to all players

	Required permission:
	None.

 Statistics

Statistics

Information

	Name:
	pyplanet.apps.core.statistics

	Depends on:
	core.maniaplanet

	Game:
	TrackMania & ShootMania

Features

This app keeps track of the general statistics across the games.

Commands

Display Ideal Checkpoints

	Command:
	/cpcomparison

	Parameters:
	None.

	Functionality:
	Find out the best route by comparing checkpoint times with all local records (to potentially find the ideal route/lines)

	Required permission:
	None.

Display Top Donators

	Command:
	/topdons

	Parameters:
	None.

	Functionality:
	Display a list of the top donating players on the server.

	Required permission:
	None.

Display Top Active

	Command:
	/topactive

	Parameters:
	None.

	Functionality:
	Display a list of the top active players on the server.

	Required permission:
	None.

Display Top Players (based on records) (TM only)

	Command:
	/topsums

	Parameters:
	None.

	Functionality:
	Display a list of best players according to the top 3 records on maps.

	Required permission:
	None.

Display personal score progression on map (TM only)

	Command:
	/scoreprogression

	Parameters:
	None.

	Functionality:
	Display a list with past scores on the current map.

	Required permission:
	None.

 PyPlanet Core/Toolbox

PyPlanet Core/Toolbox

Information

	Name:
	pyplanet.apps.core.pyplanet

	Depends on:
	
	

	Game:
	
	

Features

This app does some of the core things of the controller.
It also provides the toolbox and several build-in views. To disable the player toolbar, edit //settings.

 Architecture & Design

Architecture & Design

Contents

	Architecture & Design

	Core Architecture

	Apps Architecture

Core Architecture

The architecture of the core and plugins is described in the sections bellow.

Inspiration.

While developing the Core we did look at how Django is managing their so called Apps. Because these apps are self contained
applications on it’s own, we also call it Apps.

[image: ../_images/architecture-overview.png]

Note

This image is only describing the most important core components, some components are not shown here.

Apps Architecture

More information about the apps itself, please go to Apps Dev Documentation

[image: ../_images/architecture.png]

 App Development

App Development

Contents

	App Development

	Useful references

	Apps Architecture

	Life Cycle
	on_init

	on_start

	on_stop

	on_destroy

	Create app
	1. Create Config

	2. Create models

	3. Add to configuration

	4. Enable debug

	5. Start PyPlanet

	Context (UI + Settings)

	Contrib + Core access

	Models
	Define models
	Fields

	Operations on models

	Migrations
	Create migrations

	Chat Messages

	Dedicated/Script methods

	User Interface
	Using templates
	Global Resources and Variables

	Template Content

	ManiaScript
	TimeUtils Lib

	ManiaLink

Useful references

You might want to look at the following pages as well to get more information:

	Signal Documentation is useful when you are going to hook into Maniaplanet.

	Architecture Overview is useful when you want to know how the core is acting on some points.

Have any questions or bugs to report? Head towards our Support page.

 Apps Architecture

Apps Architecture

[image: ../_images/architecture.png]

 Life Cycle

Life Cycle

[image: ../_images/lifecycle.png]

Warning

Currently the life cycle isn’t fully implemented. Only the on_init and on_start will be called, but please
prepare your app to support the following life cycle methods.

To support the life cycle in the future, use the self.context.signals instead of the self.instance.signal_manager

on_init

The on_init() is called the moment after the apps have been ordered at the dependency trees. This means, there is not
yet a stable point to communicate to apps, so it should only initiate local actions, such as clearing variables,
initing related services (like startup of http server).

The on_init() method is a coroutine and will be waited on before starting the other apps init action.

on_start

The on_start() is called at the moment all apps, models and other components are ready and the apps should be started.
In the method you should init the receivers inside of your app, make an active operation that would init remote connections.
For example, you would really like to start showing UI for all players, or initiate local variables based on other apps
or the player manager.

The on_start() method is a coroutine and will be waited on.

on_stop

The on_stop() is called when stopping the app internally (so not when exitting PyPlanet!). Some situations like
game mode switching will make sure that no apps are being active at the moment of playing an incapable game-mode, game or
another app is unloaded that was depending on your app.

PyPlanet will make sure your UI elements are hide from your players, so you don’t have to do this. But remember that the
app could start at any time, meaning that some context would not be valid anymore, and you should take care of this in the
on_start() again.

The on_stop() method is a coroutine and will be waited on.

on_destroy

This method is only called when the app is going to be removed from memory, just before. Mostly only used to save some data.

The on_destroy() method is a coroutine and will be waited on.

 Create app

Create app

You can create an app in different places. For private apps we recommend using the apps folder in your root project
directory.

If you are planning to develop an app for other servers and you want to publish it on PyPi for example, we advise to create
your own module folder in your development project root.

Tip

You can use the CLI tool to generate an API module for you.

pyplanet init_app app_module

1. Create Config

The main entry is the applications config class itself. It is an extended class of the base pyplanet.apps.AppConfig.

You have to create a file named __init__.py in your app module containing the implementation of the config class. Example is bellow.

class Admin(AppConfig):
 game_dependencies = ['trackmania', 'shootmania']
 # Game dependencies. We will check if the current game is in the list (or).
 # Leave undeclared for everything

 mode_dependencies = ['TimeAttack']
 # All the scripted mode file names that are supported by this app.
 # Leave undeclared for everything

 app_dependencies = ['core.maniaplanet']
 # Dependencies to other apps.
 # We will make sure that the dependent apps are started first!

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.property = 'anything here'

 # Implement the life cycle method if you need them. Make sure you call the super in the methods!

2. Create models

In the same App module you can either create a single models file calling models.py or a module models. When
you are using the module method, you need to import all the model files in the models/__init__.py.

Please take a look at the page Define models on how to create model declarations.

3. Add to configuration

Make sure you add your new App to your configuration.

APPS = {
 'default': [
 '...',
 'my_app',
 '...',
}

4. Enable debug

Make sure you enable the DEBUG mode during development, this prevents the PyPlanet team from thinking that your App
is giving issues in production environments.

You can enable debug either with using the environment variable PYPLANET_DEBUG or by editing the configuration:

DEBUG = True

5. Start PyPlanet

Your ready to get started. Start PyPlanet!

 Context (UI + Settings)

Context (UI + Settings)

Every app has some special access to components such as settings and UI. This is needed to be able to unregister the
apps things when it’s unloaded/stopped, such as hiding all manialinks.

You can access this from your app instance like this:

self.context.ui

The way this is implemented will make sure that future updates won’t break your local properties in the app class itself.
For the full contents of this context, take a look at App Context Class.

 Contrib + Core access

Contrib + Core access

Inside of your app you can access the instance and it’s contribution- and core components.
To access the instance you can simply use this code statement:

self.instance

From there you can access most of the controllers components.
For the full list of the properties of the instance class. Look at Instance Class

 Models

Models

Models are defined in either the app/models.py file or the app/models/ folder (with loading from the app/models/__init__.py)

Models tables are created at the moment PyPlanet starts for the first time as it sees your model, and not yet have a table.
To adjust models you should create migrations.

Define models

You have two base classes where your model class could inherit from, we recommend to use the TimedModel most of the times.
There are a few exceptions where we recommend the base Model, for example glue models. Or very data-intensive or data where
you don’t need to know when it’s created or updated.

The TimedModel includes these two fields for every model: created_at and updated_at. Those two fields will
be filled and adjusted automatically when saving/updating.

The Model includes no fields and is the very base of the model declaration inherit tree.

For defining fields you can use the asterisk import from peewee to have all Fields available in your file:

from peewee import *

Examples of model declaration:

class Permission(Model):
 namespace = CharField(
 max_length=255,
 null=False,
 help_text='Namespace of the permission. Mostly the app.label.'
)

 name = CharField(
 max_length=255,
 null=False,
 help_text='Name of permission, in format {app_name|core}:{name}'
)

 description = TextField(
 null=True, default=None, help_text='Description of permission.'
)

 min_level = IntegerField(
 default=1, help_text='Minimum required player level to be able to use this permission.'
)

 class Meta:
 indexes = (
 (('namespace', 'name'), True),
)

For more examples take a look at: pyplanet/apps/core/maniaplanet/models/*.py. You will find the player and map model
here with lots of examples.

For more information about fields please refer to the Peewee documentation: http://peewee.readthedocs.io/en/latest/.

For more information about operations on models, don’t look at the Peewee documentation at first, but look further in this document.

Fields

Please take a look at: http://peewee.readthedocs.io/en/latest/peewee/models.html#fields

Operations on models

Create new object instance in the database

instance = Model(column='value', second_col=True)
await instance.save()

Delete instance from database

await instance.destroy()

Find instance by id or other unique value (search for one instance)

instance = await Model.get(id=1)
instance = await Model.get(login='toffe')

Find instances (query) by executing query with where condition

instances = await Model.execute(Model.select().where(Model.column == 1))

More examples will follow, feel free to ask for help on this topic in the meantime.

Warning

We use a customized version of the Peewee library to have support for async access to database.
Because this reason we had to override some methods or create our own. Please don’t take not that if you get a
sync code exception that it’s not yet supported by PyPlanet async wrapper.

Please contact us on Github if you think you have an issue with the Database Layer. It’s one of the most important
parts of PyPlanet!

 Migrations

Migrations

Migrations of models are handled with the .migrations module contents. It works quite like Django migrations work,
except it automatically executes the migrations at first boot.

Create migrations

	To create a migration, go to your app base folder and create a folder (if not yet exist), name the folder 'migrations'.

	You should create a new python file with the following name pattern:

001_name.py Where 001 is the migration number, this should be unique and the name is a name to represent to the developer.

	Past the following snippet and change it like you want.

sample_field = CharField(default='unknown')

def upgrade(migrator: SchemaMigrator):
 migrate(
 migrator.add_column(TestModel._meta.db_table, 'sample', sample_field)
)

def downgrade(migrator: SchemaMigrator):
 pass

	Change code as you need, but make sure you define defaults or nullable fields, and make sure you use the db_table
from the meta class of the model.

	Make sure you can upgrade at least. Downgrading is not yet included in the scope, but it’s better to implement the
downgrade as well.

	Test, make sure it’s able to migrate on at least these engines: MySQL or PostgreSQL.

 Chat Messages

Chat Messages

We implemented an abstraction that will provide auto multicall and auto prefixing for you. You can use the following
statements for example:

Send chat message to all players.
await self.instance.chat('Test')

Send chat message to specific player or multiple players.
await self.instance.chat('Test', 'player_login') # Sends to single player.
await self.instance.chat('Test', 'player_login', player_instance) # Sends to both players.

Execute in chain (Multicall).
await self.instance.chat.execute(
 'global_message',
 self.instance.chat('Test', 'player_login'),
 self.instance.chat('Test2', 'player_login2'),
)

You can combine this with other calls in a GBX multicall:
await self.instance.gbx.multicall(
 self.instance.gbx.prepare('SetServerName', 'Test'),
 self.instance.chat('Test2', 'player_login2'),
)

 Dedicated/Script methods

Dedicated/Script methods

From your app you can execute dedicated GBX methods (or scripted methods) with the following methods:

Force player_login into spectator.
await self.instance.gbx('ForceSpectator', 'player_login', 1)

Execute multiple gbx actions in a multicall (Is way faster).
await self.instance.gbx.multicall(
 self.instance.gbx('Method', 'arg1', 'arg2'),
 self.instance.gbx('Method', 'arg1', 'arg2'),
 self.instance.gbx('Method', 'arg1', 'arg2'),
)

 User Interface

User Interface

You are free to implement any User Interface features in your app yourself. You can use the template engine Jinja2 for
getting values from the Python code inside of your XML that will be displayed to the client.

On this page you will find out how to implement a simple template and maniascript integration. As well as the useful
manialink classes for hiding or showing for specific view styles.

Using templates

To use templates, use the pyplanet.views.template.TemplateView class (click on the class for the API docs).
You can provide the class property template_name which should contain the exact template filename and path.

Example for the example_app:

class SampleView(TemplateView):
 template_name = 'example_app/test.xml' # template should be in: ./example_app/templates/test.xml
 # Some prefixes that can be used in the template_name:
 #
 # - core.views: ``pyplanet.views.templates``.
 # - core.pyplanet: ``pyplanet.apps.core.pyplanet.templates``.
 # - core.maniaplanet: ``pyplanet.apps.core.pyplanet.templates``.
 # - core.trackmania: ``pyplanet.apps.core.trackmania.templates``.
 # - core.shootmania: ``pyplanet.apps.core.shootmania.templates``.
 # - [app_label]: ``[app path]/templates``.

Providing data to the template can be done with several overriden methods in the class itself.

	Async Method get_context_data():
	Return the global context data here. Make sure you use the super() to retrieve the current context.

	Async Method get_all_player_data(logins):
	Retrieve the player specific dictionary. Return dict with player as key and value should contain the data dict.

	Async Method get_per_player_data(login):
	Retrieve the player specific dictionary per player. Return dict with the data dict for the specific login (player).

Make sure you visit the class documentation for all the methods on the TemplateView: pyplanet.views.template.TemplateView

Global Resources and Variables

New since 0.9.0 are some of the global resources and variables available in the templates at any time.
The following list is available:

	_instance: The PyPlanet instance is available with this variable. See pyplanet.core.instance.Instance for more information.

	_game: The game object is available with some game information. See pyplanet.core.game._Game for more information.

	_app: The App instance if in any App. Not always available, only inside apps.

With these three global variables/objects you are able to retrieve a lot of information about the current situation on the server
and the versions of the server, title, and such.

Template Content

The actual XML you include with the template_name property is the file that get’s loaded on rendering.
The file can contain anything and can be enriched with the Jinja2 Template Language.

For the Jinja2 documentation we refer to the following page: http://jinja.pocoo.org/docs/2.10/

Example of a XML template with Jinja2 statements:

<frame pos="0 -40" id="sample_frame">
 {% if variable == 'value' %}
 <label pos="0 0" size="30 5" text="Variable contains value!" textsize="1.2" valign="top" />
 {% else %}
 <label pos="0 0" size="30 5" text="Variable does not contain value!" textsize="1.2" valign="top" />
 {% endif %}
</frame>

ManiaScript

Including ManiaScript to your ManiaLink template is pretty simple actually. Even including global libraries provided by
the PyPlanet team is pretty easy. We will explain how you include ManiaScript in your ManiaLink template.

To include ManiaScript in your ManiaLink template, make sure you create a new file besides your ManiaLink template ending
with .Script.Txt and add the following line to your ManiaLink (XML) template:

<script><!-- {% include 'my_app/sample.Script.Txt' %} --></script>

That’s it! Now you can start with writing ManiaScript in the sample.Script.Txt. You can use Jinja2 inside your
ManiaScript to add dynamic content as well.

To include libraries from PyPlanet inside of your ManiaScript, use the following in your .Script.Txt file:

// Includes
{% include 'core.views/libs/TimeUtils.Script.Txt' %}

Warning

Remember, the core script utils can change behaviour at any time!

TimeUtils Lib

The TimeUtils contains several useful utils for working with times.
The full path: core.views/libs/TimeUtils.Script.Txt.

Text LeftPad(Integer number, Integer pad)

This method will make sure the number is left-padded with the number of pads given.

`Text TimeToText(Integer inTime)`

This method will format time to text to show local or dedi records for example.

ManiaLink

Useful information about ManiaLink changes or additions made by PyPlanet.
ManiaLink docs can be found here: https://doc.maniaplanet.com/manialink

 Signals (callbacks)

Signals (callbacks)

Contents

	Signals (callbacks)

	Maniaplanet
	Flow

	Map

	Player

	User Interface

	Other

	Shootmania
	Base

	Elite

	Joust

	Royal

	Trackmania

 Maniaplanet

Maniaplanet

Flow

	
pyplanet.apps.core.maniaplanet.callbacks.flow.loading_map_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Loading Map end.

	Code

	maniaplanet:loading_map_end

	Description

	Callback sent when the server finishes to load the map.

	Original Callback

	Script Maniaplanet.LoadingMap_End

	Parameters

	map (pyplanet.core.maniaplanet.models.map.Map) – Map instance from database. Updated with the provided data.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.loading_map_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Loading Map start.

	Code

	maniaplanet:loading_map_start

	Description

	Callback sent when the server starts loading the map.

	Original Callback

	Script Maniaplanet.LoadingMap_Start

	Parameters

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.match_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Match End.

	Code

	maniaplanet:match_end

	Description

	Callback sent when the “EndMatch” section start.

	Original Callback

	Script Maniaplanet.EndMatch_Start

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.match_end__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Match End. (End event)

	Code

	maniaplanet:match_end__end

	Description

	Callback sent when the “EndMatch” section ends.

	Original Callback

	Script Maniaplanet.EndMatch_End

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.match_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Match Start.

	Code

	maniaplanet:match_start

	Description

	Callback sent when the “StartMatch” section start.

	Original Callback

	Script Maniaplanet.StartMatch_Start

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.match_start__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Match Start. (End event)

	Code

	maniaplanet:match_start__end

	Description

	Callback sent when the “StartMatch” section end.

	Original Callback

	Script Maniaplanet.StartMatch_End

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.play_loop_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Play Loop End.

	Code

	maniaplanet:play_loop_end

	Description

	Callback sent when the “PlayLoop” section ends.

	Original Callback

	Script Maniaplanet.EndPlayLoop

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.play_loop_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Play Loop Start.

	Code

	maniaplanet:play_loop_start

	Description

	Callback sent when the “PlayLoop” section starts.

	Original Callback

	Script Maniaplanet.StartPlayLoop

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.podium_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Podium end.

	Code

	maniaplanet:podium_end

	Description

	Callback sent when the podium sequence ends.

	Original Callback

	Script Maniaplanet.Podium_End

	Parameters

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.podium_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Podium start.

	Code

	maniaplanet:podium_start

	Description

	Callback sent when the podium sequence starts.

	Original Callback

	Script Maniaplanet.Podium_Start

	Parameters

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.round_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Round Start.

	Code

	maniaplanet:round_end

	Description

	Callback sent when the “EndRound” section starts.

	Original Callback

	Script Maniaplanet.EndRound_Start

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.round_end__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Round Start. (End event)

	Code

	maniaplanet:round_end__end

	Description

	Callback sent when the “EndRound” section ends.

	Original Callback

	Script Maniaplanet.EndRound_End

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.round_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Round Start.

	Code

	maniaplanet:round_start

	Description

	Callback sent when the “StartRound” section starts.

	Original Callback

	Script Maniaplanet.StartRound_Start

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.round_start__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Round Start. (End event)

	Code

	maniaplanet:round_start__end

	Description

	Callback sent when the “StartRound” section ends.

	Original Callback

	Script Maniaplanet.StartRound_End

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.server_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Server End signal

	Code

	maniaplanet:server_end

	Description

	This callback is called when the server script is end. The begin of the event.

	Original Callback

	Script Maniaplanet.EndServer_Start

	Parameters

	
	restarted – Boolean giving information if the script has restarted.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.server_end__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Server End signal (end event)

	Code

	maniaplanet:server_end__end

	Description

	This callback is called when the server script is end. The end of the event.

	Original Callback

	Script Maniaplanet.EndServer_End

	Parameters

	
	restarted – Boolean giving information if the script has restarted.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.server_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Server Start signal

	Code

	maniaplanet:server_start

	Description

	This callback is called when the server script is (re)started. The begin of the event.

	Original Callback

	Script Maniaplanet.StartServer_Start

	Parameters

	
	restarted – Boolean giving information if the script has restarted.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.server_start__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Server Start signal (end of event).

	Code

	maniaplanet:server_start__end

	Description

	This callback is called when the server script is (re)started. The end of the event.

	Original Callback

	Script Maniaplanet.StartServer_End

	Parameters

	
	restarted – Boolean giving information if the script has restarted.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.status_changed = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Server Status Changed.

	Code

	maniaplanet:status_changed

	Description

	Callback sent when the podium sequence ends.

	Original Callback

	Native Maniaplanet.Podium_End

	Parameters

	
	1 (int) – Status Code.

	2 (str) – Status Name.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.turn_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Turn End.

	Code

	maniaplanet:turn_end

	Description

	Callback sent when the “EndTurn” section starts.

	Original Callback

	Script Maniaplanet.EndTurn_Start

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.turn_end__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Turn End. (End event)

	Code

	maniaplanet:turn_end__end

	Description

	Callback sent when the “EndTurn” section ends.

	Original Callback

	Script Maniaplanet.EndTurn_End

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.turn_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Turn Start.

	Code

	maniaplanet:turn_start

	Description

	Callback sent when the “StartTurn” section starts.

	Original Callback

	Script Maniaplanet.StartTurn_Start

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.turn_start__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Turn Start. (End event).

	Code

	maniaplanet:turn_start__end

	Description

	Callback sent when the “StartTurn” section ends.

	Original Callback

	Script Maniaplanet.StartTurn_End

	Parameters

	
	count – Each time this section is played, this number is incremented by one.

	time – Server time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.unloading_map_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Unloading of the Map ends.

	Code

	maniaplanet:unloading_map_end

	Description

	Callback sent when the server finishes to unload a map.

	Original Callback

	Script Maniaplanet.UnloadingMap_End

	Parameters

	map (pyplanet.core.maniaplanet.models.map.Map) – Map instance from database. Updated with the provided data.

	
pyplanet.apps.core.maniaplanet.callbacks.flow.unloading_map_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Unloading of the Map starts.

	Code

	maniaplanet:unloading_map_start

	Description

	Callback sent when the server starts to unload a map.

	Original Callback

	Script Maniaplanet.UnloadingMap_Start

	Parameters

	map (pyplanet.core.maniaplanet.models.map.Map) – Map instance from database. Updated with the provided data.

Map

	
pyplanet.apps.core.maniaplanet.callbacks.map.map_begin = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Begin of map.

	Code

	maniaplanet:map_begin

	Description

	Callback sent when map begins.

	Original Callback

	Native Maniaplanet.BeginMap

	Parameters

	map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map instance.

	
pyplanet.apps.core.maniaplanet.callbacks.map.map_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	End of map.

	Code

	maniaplanet:map_end

	Description

	Callback sent when map ends.

	Original Callback

	Native Maniaplanet.EndMap

	Parameters

	map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map instance.

	
pyplanet.apps.core.maniaplanet.callbacks.map.map_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Begin of map. (Scripted!)

	Code

	maniaplanet:map_begin

	Description

	Callback sent when map starts (same as begin, but scripted).

	Original Callback

	Script Maniaplanet.StartMap_Start

	Parameters

	
	time – Time when callback has been sent.

	count – Counts of the callback that was sent.

	restarted – Is the map restarted.

	map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map instance.

	
pyplanet.apps.core.maniaplanet.callbacks.map.map_start__end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Begin of map, end of event. (Scripted!)

	Code

	maniaplanet:map_start__end

	Description

	Callback sent when map starts (same as begin, but scripted). End of the event

	Original Callback

	Script Maniaplanet.StartMap_End

	Parameters

	
	time – Time when callback has been sent.

	count – Counts of the callback that was sent.

	restarted – Is the map restarted.

	map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map instance.

	
pyplanet.apps.core.maniaplanet.callbacks.map.playlist_modified = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Maplist changes.

	Code

	maniaplanet:playlist_modified

	Description

	Callback sent when map list changes.

	Original Callback

	Native Maniaplanet.MapListModified

	Parameters

	
	1 (int) – Current map index.

	2 (int) – Next map index.

	3 (bool) – Is List Modified.

Player

	
pyplanet.apps.core.maniaplanet.callbacks.player.player_chat = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player has been writing a chat entry. When the server writes something we wont inform it in here!

	Code

	maniaplanet:player_chat

	Description

	Callback sent when a player chats.

	Original Callback

	Native Maniaplanet.PlayerChat

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	text – Text of chat

	cmd – Boolean if it’s a command. Be aware, you should use the command manager for commands!

	
pyplanet.apps.core.maniaplanet.callbacks.player.player_connect = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player has been connected.

	Code

	maniaplanet:player_connect

	Description

	Callback sent when a player connects and we fetched our data.

	Original Callback

	Native Maniaplanet.PlayerConnect

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	is_spectator – Boolean determinating if the player joined as spectator.

	source – Raw payload, best to not use!

	
pyplanet.apps.core.maniaplanet.callbacks.player.player_disconnect = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player has been disconnected.

	Code

	maniaplanet:player_disconnect

	Description

	Callback sent when a player disconnects.

	Original Callback

	Native Maniaplanet.PlayerDisconnect

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	reason – Reason of leave

	source – Raw payload, best to not use!

	
pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_player_slot = <pyplanet.core.events.dispatcher.Signal object>

	
	Signal

	Player enters a player slot.

	Code

	maniaplanet:player_enter_player_slot

	Description

	Player change into a player, is using a player slot.

	Original Callback

	None

	Parameters

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	
pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_spectator_slot = <pyplanet.core.events.dispatcher.Signal object>

	
	Signal

	Player enters a spectator slot (not temporary).

	Code

	maniaplanet:player_enter_spectator_slot

	Description

	Player change into a spectator, is using a spectator slot.

	Original Callback

	None

	Parameters

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	
pyplanet.apps.core.maniaplanet.callbacks.player.player_info_changed = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player has changed status.

	Code

	maniaplanet:player_info_changed

	Description

	Callback sent when a player changes from state or information. The callback has been updated in 0.6.0 to include the
information retrieved from extracting the flags parameter.

	Original Callback

	Native Maniaplanet.PlayerInfoChanged

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance (COULD BE NONE SOMETIMES!).

	player_login – Player login string.

	is_spectator – Is player spectator (bool).

	is_temp_spectator – Is player temporary spectator (bool).

	is_pure_spectator – Is player pure spectator (bool).

	auto_target – Player using auto target.

	target_id – The target player id (not login!).

	target (pyplanet.apps.core.maniaplanet.models.player.Player) – The target player instance or None if not found/none spectating.

	flags – Raw flags.

	spectator_status – Raw spectator status.

	team_id – Team ID of player.

	player_id – Player ID (server id).

	force_spectator (int) – 1, 2 or 3. Force spectator state

	is_referee – Is the player a referee.

	is_podium_ready – Is the player podium ready.

	is_using_stereoscopy – Is the player using stereoscopy

	is_managed_by_other_server – Is the player managed by another server (relaying).

	is_server – Is the player one of the servers.

	has_player_slot – Has the player a reserved player slot.

	is_broadcasting – Is the player broadcasting (steaming) via the in-game stream functionality.

	has_joined_game – Is the player ready and has it joined the game as player.

User Interface

	
pyplanet.apps.core.maniaplanet.callbacks.ui.manialink_answer = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player has raised an action on the Manialink.

	Code

	maniaplanet:manialink_answer

	Description

	Callback sent when a player clicks on an event of a manialink.

	Original Callback

	Native Maniaplanet.PlayerManialinkPageAnswer

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	action – Action name

	values – Values (in dictionary).

Warning

Don’t use this callback directly, use the abstraction of ``View`` and ``StaticManialink`` to handle events of your
manialink!

Other

	
pyplanet.apps.core.maniaplanet.callbacks.other.bill_updated = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Bill has been updated.

	Code

	maniaplanet:bill_updated

	Description

	Callback sent when a bill has been updated.

	Original Callback

	Native Maniaplanet.BillUpdated

	Parameters

	
	1 (int) – Bill id.

	2 (int) – State.

	3 (str) – State name.

	4 (int) – Transaction id.

	
pyplanet.apps.core.maniaplanet.callbacks.other.channel_progression_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Signal sent when channel progression sequence ends.

	Code

	maniaplanet:channel_progression_end

	Description

	Callback sent when the channel progression sequence ends.

	Original Callback

	Script Maniaplanet.ChannelProgression_End

	Parameters

	time – Time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.other.channel_progression_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Signal sent when channel progression sequence starts.

	Code

	maniaplanet:channel_progression_start

	Description

	Callback sent when the channel progression sequence starts.

	Original Callback

	Script Maniaplanet.ChannelProgression_Start

	Parameters

	time – Time when callback has been sent.

	
pyplanet.apps.core.maniaplanet.callbacks.other.on_echo = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Echo was sent from other Controller/GBXRemote.

	Code

	maniaplanet:on_echo

	Description

	Callback sent when a echo was sent from Controller/GBXRemote.

	Original Callback

	Native Maniaplanet.Echo

Echo(‘Test1’, ‘Test2’)
will be reverted to:
(‘Test2, Test1’)

	Parameters

	
	internal – internal

	public – public

	
pyplanet.apps.core.maniaplanet.callbacks.other.server_chat = <pyplanet.core.events.dispatcher.Signal object>

	
	Signal

	Server send a chat message.

	Code

	maniaplanet:server_chat

	Description

	Custom signal called when the server outputs a message.

	Origin Callback

	None (via Chat callback).

	
pyplanet.apps.core.maniaplanet.callbacks.other.server_password = <pyplanet.core.events.dispatcher.Signal object>

	
	Signal

	Server player or spectator password changed

	Code

	maniaplanet:server_password

	Description

	Custom signal called when the password has been changed with PyPlanet.

	Origin Callback

	None.

	Parameters

	
	password (str) – String with the new password.

	kind (str) – Kind of password, could be ‘player’ or ‘spectator’.

	
pyplanet.apps.core.maniaplanet.callbacks.other.vote_updated = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Vote has been updated.

	Code

	maniaplanet:vote_updated

	Description

	Callback sent when a call vote has been updated.

	Original Callback

	Native Maniaplanet.VoteUpdated

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	state – State name

	cmd_name – Command name

	cmd_param – Parameter given with command.

 Shootmania

Shootmania

Base

	Weapons

	[1-Laser, 2-Rocket, 3-Nucleus, 5-Arrow]

	
pyplanet.apps.core.shootmania.callbacks.base.action_custom_event = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Handle Action Custom Event.

	Code

	shootmania:action_custom_event

	Description

	Callback sent when an action triggers a custom event.

	Original Callback

	Script Shootmania.Event.OnActionCustomEvent

	Parameters

	
	time – Time of server when callback is sent.

	shooter (pyplanet.apps.core.maniaplanet.models.player.Player) – Shooter player instance if any

	victim (pyplanet.apps.core.maniaplanet.models.player.Player) – Victim player instance if any

	actionid – Action Identifier.

	* – Any other params, like param1, param2, etc…

	
pyplanet.apps.core.shootmania.callbacks.base.action_event = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Handle Action Event.

	Code

	shootmania:action_event

	Description

	Callback sent when an action triggers an event.

	Original Callback

	Script Shootmania.Event.OnActionEvent

	Parameters

	
	time – Time of server when callback is sent.

	login – Player login

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	action_input – Action input.

	
pyplanet.apps.core.shootmania.callbacks.base.on_armor_empty = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Armor empty, player eliminated.

	Code

	shootmania:on_armor_empty

	Description

	Callback sent when a player is eliminated.

	Original Callback

	Script Shootmania.Event.OnArmorEmpty

	Parameters

	
	shooter (pyplanet.apps.core.maniaplanet.models.player.Player) – shooter, Player instance

	time – Time of server when callback is sent.

	weapon – Weapon number.

	victim (pyplanet.apps.core.maniaplanet.models.player.Player) – victim, Player instance

	distance – Distance between victim and shooter.

	shooter_position – Position of shooter.

	victim_position – Position of victim.

	
pyplanet.apps.core.shootmania.callbacks.base.on_capture = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Landmark has been captured

	Code

	shootmania:on_capture

	Description

	Callback sent when a landmark is captured.

	Original Callback

	Script Shootmania.Event.OnCapture

time=source[‘time’], players=players, landmark=source[‘landmark’]

	Parameters

	
	time – Time of server when callback is sent.

	players (pyplanet.apps.core.maniaplanet.models.player.Player[]) – Player list (instances).

	landmark – Landmark information, raw!

	
pyplanet.apps.core.shootmania.callbacks.base.on_command = <pyplanet.core.events.callback.Callback object>

	
	Signal

	On Command

	Code

	shootmania:on_command

	Description

	Callback sent when a command is executed on the server.

	Original Callback

	Script Shootmania.Event.OnCommand

	Parameters

	
	time – Time of server when callback is sent.

	name – Name of the command

	value (dict) – Value in dictionary of the command.

	
pyplanet.apps.core.shootmania.callbacks.base.on_default = <pyplanet.core.events.callback.Callback object>

	
	Signal

	On Default Event

	Code

	shootmania:on_default

	Description

	Callback sent when a old event or default event has been fired.

	Original Callback

	Script Shootmania.Event.Default

	Parameters

	
	time – Time of server when callback is sent.

	type – Name of the command

	
pyplanet.apps.core.shootmania.callbacks.base.on_fall_damage = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Fall Damage

	Code

	shootmania:on_fall_damage

	Description

	Callback sent when a player suffers fall damage.

	Original Callback

	Script Shootmania.Event.OnFallDamage

	Parameters

	
	time – Time of server when callback is sent.

	victim (pyplanet.apps.core.maniaplanet.models.player.Player) – victim, Player instance

	
pyplanet.apps.core.shootmania.callbacks.base.on_hit = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player hit.

	Code

	shootmania:on_hit

	Description

	Callback sent when a player is hit.

	Original Callback

	Script Shootmania.Event.OnHit

	Parameters

	
	shooter (pyplanet.apps.core.maniaplanet.models.player.Player) – shooter, Player instance

	time – Time of server when callback is sent.

	weapon – Weapon number.

	victim (pyplanet.apps.core.maniaplanet.models.player.Player) – victim, Player instance

	damage – Damage done.

	points – Points scored by hit.

	distance – Distance between victim and shooter.

	shooter_position – Position of shooter.

	victim_position – Position of victim.

	
pyplanet.apps.core.shootmania.callbacks.base.on_near_miss = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Near Miss.

	Code

	shootmania:on_near_miss

	Description

	Callback sent when a player dodges a projectile.

	Original Callback

	Script Shootmania.Event.OnNearMiss

	Parameters

	
	shooter (pyplanet.apps.core.maniaplanet.models.player.Player) – shooter, Player instance

	time – Time of server when callback is sent.

	weapon – Weapon number.

	victim (pyplanet.apps.core.maniaplanet.models.player.Player) – victim, Player instance

	distance – Distance between victim and shooter.

	shooter_position – Position of shooter.

	victim_position – Position of victim.

	
pyplanet.apps.core.shootmania.callbacks.base.on_shoot = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player shoot.

	Code

	shootmania:on_shoot

	Description

	Callback sent when a player shoots.

	Original Callback

	Script Shootmania.Event.OnShoot

	Parameters

	
	shooter (pyplanet.apps.core.maniaplanet.models.player.Player) – Shooter, Player instance

	time – Time of server when callback is sent.

	weapon – Weapon number.

	
pyplanet.apps.core.shootmania.callbacks.base.on_shot_deny = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player denies a projectile.

	Code

	shootmania:on_shot_deny

	Description

	Callback sent when a player denies a projectile.

	Original Callback

	Script Shootmania.Event.OnShotDeny

	Parameters

	
	time – Time of server when callback is sent.

	shooter (pyplanet.apps.core.maniaplanet.models.player.Player) – shooter, Player instance

	victim (pyplanet.apps.core.maniaplanet.models.player.Player) – victim, Player instance

	shooter_weapon – Weapon number of shooter.

	victim_weapon – Weapon number of victim that denied the shot.

	distance – Distance between victim and shooter.

	shooter_position – Position of shooter.

	victim_position – Position of victim.

	
pyplanet.apps.core.shootmania.callbacks.base.player_added = <pyplanet.core.events.callback.Callback object>

	
	Signal

	On player added.

	Code

	shootmania:player_added

	Description

	Callback sent when a player joins the server.

	Original Callback

	Script Shootmania.Event.OnPlayerAdded

	Parameters

	
	time – Time of server when callback is sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	team – Team nr.

	language – Language code, like ‘en’.

	ladder_rank – Current ladder rank.

	ladder_points – Current ladder points.

	
pyplanet.apps.core.shootmania.callbacks.base.player_removed = <pyplanet.core.events.callback.Callback object>

	
	Signal

	On player removed.

	Code

	shootmania:player_removed

	Description

	Callback sent when a player leaves the server.

	Original Callback

	Script Shootmania.Event.OnPlayerRemoved

	Parameters

	
	time – Time of server when callback is sent.

	login – Player login string

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	
pyplanet.apps.core.shootmania.callbacks.base.player_request_action_change = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player requests action change.

	Code

	shootmania:player_request_action_change

	Description

	Callback sent when a player requests to use another action.

	Original Callback

	Script Shootmania.Event.OnPlayerRequestActionChange

	Parameters

	
	time – Time of server when callback is sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	action_change – Can be -1 (request previous action) or 1 (request next action)

	
pyplanet.apps.core.shootmania.callbacks.base.player_request_respawn = <pyplanet.core.events.callback.Callback object>

	
	Signal

	On player request respawn.

	Code

	shootmania:player_request_respawn

	Description

	Callback sent when a player presses the respawn button.

	Original Callback

	Script Shootmania.Event.OnPlayerRequestRespawn

	Parameters

	
	time – Time of server when callback is sent.

	login – Player login string

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	
pyplanet.apps.core.shootmania.callbacks.base.player_throws_object = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player Throws an object.

	Code

	shootmania:player_touch_object

	Description

	Callback sent when a player throws an object.

	Original Callback

	Script Shootmania.Event.OnPlayerThrowsObject

	Parameters

	
	time – Time of server when callback is sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	object_id – Object Identifier.

	model_id – Model identifier.

	model_name – Model name.

	
pyplanet.apps.core.shootmania.callbacks.base.player_touches_object = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player Touches Object.

	Code

	shootmania:player_touches_object

	Description

	Callback sent when a player touches an object.

	Original Callback

	Script Shootmania.Event.OnPlayerTouchesObject

	Parameters

	
	time – Time of server when callback is sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	object_id – Object Identifier.

	model_id – Model identifier.

	model_name – Model name.

	
pyplanet.apps.core.shootmania.callbacks.base.player_triggers_sector = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player Triggers Sector.

	Code

	shootmania:player_triggers_sector

	Description

	Callback sent when a player triggers a sector.

	Original Callback

	Script Shootmania.Event.OnPlayerTriggersSector

	Parameters

	
	time – Time of server when callback is sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	sector_id – Sector Identifier.

	
pyplanet.apps.core.shootmania.callbacks.base.scores = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Score callback, called after the map. (Around the podium time).

	Code

	shootmania:scores

	Description

	Teams and players scores.

	Original Callback

	Script Shootmania.Scores

	Parameters

	
	players (list) – Player score payload. Including player instance etc.

	teams (list) – Team score payload.

	winner_team – The winning team.

	use_teams – Use teams.

	winner_player – The winning player.

	section – Section, current progress of match. Important to check before you save results!!

Elite

	Victory Types

	1 = time limit reached, 2 = capture, 3 = attacker eliminated, 4 = defenders eliminated.

	
pyplanet.apps.core.shootmania.callbacks.elite.turn_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Elite turn start.

	Code

	shootmania:elite_turn_end

	Description

	Information about the ending turn.

	Original Callback

	Script Shootmania.Elite.EndTurn

	Parameters

	victory_type – Describe how the turn was won. 1 = time limit, 2 = capture, 3 = attacker eliminated, 4 = defenders eliminated

	
pyplanet.apps.core.shootmania.callbacks.elite.turn_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Elite turn start.

	Code

	shootmania:elite_turn_start

	Description

	Information about the starting turn.

	Original Callback

	Script Shootmania.Elite.StartTurn

	Parameters

	
	attacker (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance of attacker.

	defenders (pyplanet.apps.core.maniaplanet.models.player.Player[]) – List with player instances of defenders.

Joust

	
pyplanet.apps.core.shootmania.callbacks.joust.player_reload = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player reloads its weapon and capture pole.

	Code

	shootmania:joust_player_reload

	Description

	Callback sent when a player capture a pole to reload its weapons.

	Original Callback

	Script Shootmania.Joust.OnReload

	Parameters

	
	login – Player login.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	
pyplanet.apps.core.shootmania.callbacks.joust.results = <pyplanet.core.events.callback.Callback object>

	
	Signal

	End of round with results of Joust round.

	Code

	shootmania:joust_results

	Description

	Callback sent at the end of the round with the scores of the two players.

	Original Callback

	Script Shootmania.Joust.RoundResult

	Parameters

	players (list) – Player score list, contains player + score.

	
pyplanet.apps.core.shootmania.callbacks.joust.selected_players = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Round starts with selected players.

	Code

	shootmania:joust_selected_players

	Description

	Callback sent at the beginning of the round with the logins of the players selected to play the round.

	Original Callback

	Script Shootmania.Joust.SelectedPlayers

	Parameters

	players (pyplanet.apps.core.maniaplanet.models.player.Player[]) – Player list (instances).

Royal

	
pyplanet.apps.core.shootmania.callbacks.royal.player_score_points = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player score points.

	Code

	shootmania:royal_player_score_points

	Description

	Callback sent when a player scores some points.

	Original Callback

	Script Shootmania.Royal.Points

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	type – Type of score, like ‘Pole’, ‘Hit’, or ‘Survival’.

	points – Points that the player gains.

	
pyplanet.apps.core.shootmania.callbacks.royal.player_spawn = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player spawns.

	Code

	shootmania:royal_player_spawn

	Description

	Callback sent when a player is spawned.

	Original Callback

	Script Shootmania.Royal.PlayerSpawn

	Parameters

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	
pyplanet.apps.core.shootmania.callbacks.royal.results = <pyplanet.core.events.callback.Callback object>

	
	Signal

	End of round with the winner of the Royal round.

	Code

	shootmania:royal_results

	Description

	Callback sent at the end of the round with the player instance of the winner.

	Original Callback

	Script Shootmania.Royal.RoundWinner

	Parameters

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance that won the round.

 Trackmania

Trackmania

	
pyplanet.apps.core.trackmania.callbacks.finish = <pyplanet.core.events.dispatcher.Signal object>

	
	Signal

	Player finishes a lap or the race.

	Code

	trackmania:finish

	Description

	Player finishes a lap or the complete race. Custom signal!.

	Original Callback

	None

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	race_time (int) – Time in milliseconds of the complete race.

	lap_time (int) – Time in milliseconds of the current lap.

	cps – Deprecated!

	lap_cps (list) – Current lap checkpoint times.

	race_cps (list) – Complete race checkpoint times.

	flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow) – Flow instance.

	is_end_race (bool) – Is this the finish and end of race.

	is_end_lap (bool) – Is this the finish and end of current lap.

	raw – Prevent to use this!

	
pyplanet.apps.core.trackmania.callbacks.give_up = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player gives up.

	Code

	trackmania:give_up

	Description

	Callback sent when a player gives up his current run/round.

	Original Callback

	Script Trackmania.Event.GiveUp

	Parameters

	
	time – Server time when callback has been sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow) – Flow class instance.

	
pyplanet.apps.core.trackmania.callbacks.request_respawn = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Request respawn by player.

	Code

	trackmania:request_respawn

	Description

	Callback sent when a player requests a respawns.

	Original Callback

	Script Trackmania.Event.OnPlayerRequestRespawn

	Parameters

	
	login (str) – Player login

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	time (int) – Time of event

	
pyplanet.apps.core.trackmania.callbacks.respawn = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player respawn at cp.

	Code

	trackmania:respawn

	Description

	Callback sent when a player respawns at the last checkpoint/start.

	Original Callback

	Script Trackmania.Event.Respawn

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow) – Flow class instance.

	race_cp – Checkpoint times in current race.

	lap_cp – Checkpoint times in current lap.

	race_time – Total race time in milliseconds.

	lap_time – Current lap time in milliseconds.

	
pyplanet.apps.core.trackmania.callbacks.scores = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Score callback, called after the map. (Around the podium time).

	Code

	trackmania:scores

	Description

	Teams and players scores.

	Original Callback

	Script Trackmania.Scores

	Parameters

	
	players (list) – Player score payload. Including player instance etc.

	teams (list) – Team score payload.

	winner_team – The winning team.

	use_teams – Use teams.

	winner_player – The winning player.

	section – Section, current progress of match. Important to check before you save results!!

	
pyplanet.apps.core.trackmania.callbacks.start_countdown = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player starts his round, the countdown starts right now.

	Code

	trackmania:start_countdown

	Description

	Callback sent when a player see the 3,2,1,Go! countdown.

	Original Callback

	Script Trackmania.Event.StartCountdown

	Parameters

	
	time – Server time when callback has been sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow) – Flow class instance.

	
pyplanet.apps.core.trackmania.callbacks.start_line = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player drives off from the start line.

	Code

	trackmania:start_line

	Description

	Callback sent when a player starts to race (at the end of the 3,2,1,GO! sequence).

	Original Callback

	Script Trackmania.Event.StartLine

	Parameters

	
	time – Server time when callback has been sent.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow) – Flow class instance.

	
pyplanet.apps.core.trackmania.callbacks.stunt = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player did a stunt.

	Code

	trackmania:stunt

	Description

	Callback sent when a player did a stunt.

	Original Callback

	Script Trackmania.Event.Stunt

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	race_time – Total race time in milliseconds.

	lap_time – Current lap time in milliseconds.

	stunt_score – Current stunt score.

	figure – Figure of stunt.

	angle – Angle of stunt.

	points – Points got by figure.

	combo – Combo counter

	is_straight – Is the jump/stunt straight.

	is_reverse – Is jump/stunt reversed.

	is_master_jump – Is master jump.

	factor – Factor multiplier of points (figure).

	
pyplanet.apps.core.trackmania.callbacks.tmnext_ko_elimination = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Knockout Elimination Callback.

	Code

	trackmania:knockout_Elimination

	Description

	Returns a webserviceId on Player Knockout.

	Original Callback

	Script Trackmania.Knockout.Elimination

	Parameters

	
	responseid – Internally used. Ignore

	account-id – example: ab6fa572-48d7-4b16-a2d7-5c760a05f97b.

	
pyplanet.apps.core.trackmania.callbacks.tmnext_properties = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Common.UIModules.Properties for TM2020

	Code

	trackmania:common_uimodules_properties

	Description

	Returns UIModules Properties like for instance: Race_Chrono see: [{'id': 'Race_Chrono', 'position': [0, -80], 'scale': 1, 'visible': True},

	Original Callback

	Script Common.UIModules.Properties

	Parameters

	
	responseid – Internally used. Ignore

	uimodules – Collection of all UIModules in TM2020.

:type id Name of the UIModule
:type position Position to place/get Position [0,-80] as example
:type scale Scale measurement
:type visible Boolean True or False

	
pyplanet.apps.core.trackmania.callbacks.warmup_end = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Warmup Ends

	Code

	trackmania:warmup_end

	Description

	Callback sent when the warmup ends.

	Original Callback

	Script Trackmania.WarmUp.End

	
pyplanet.apps.core.trackmania.callbacks.warmup_end_round = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Warmup Round Ends.

	Code

	trackmania:warmup_end_round

	Description

	Callback sent when a warm up round ends.

	Original Callback

	Script Trackmania.WarmUp.EndRound

	Parameters

	
	current – Current round number.

	total – Total warm up rounds.

	
pyplanet.apps.core.trackmania.callbacks.warmup_start = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Warmup Starts

	Code

	trackmania:warmup_start

	Description

	Callback sent when the warmup starts.

	Original Callback

	Script Trackmania.WarmUp.Start

	
pyplanet.apps.core.trackmania.callbacks.warmup_start_round = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Warmup Round Starts.

	Code

	trackmania:warmup_start_round

	Description

	Callback sent when a warm up round start.

	Original Callback

	Script Trackmania.WarmUp.StartRound

	Parameters

	
	current – Current round number.

	total – Total warm up rounds.

	
pyplanet.apps.core.trackmania.callbacks.warmup_status = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Status of Trackmania warmup. (mostly as response).

	Code

	trackmania:warmup_status

	Description

	The status of Trackmania’s the warmup.

	Original Callback

	Script Trackmania.WarmUp.Status

	Parameters

	
	responseid – Internally used. Ignore

	available (bool) – Is warmup available in the game mode. (Boolean).

	active (bool) – Is warmup active and ongoing right now.

	
pyplanet.apps.core.trackmania.callbacks.waypoint = <pyplanet.core.events.callback.Callback object>

	
	Signal

	Player crosses a checkpoint.

	Code

	trackmania:waypoint

	Description

	Callback sent when a player crosses a checkpoint.

	Original Callback

	Script Trackmania.Event.WayPoint

player=player, race_time=source[‘racetime’], flow=flow, raw=source

	Parameters

	
	race_time – Total race time in milliseconds.

	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance

	flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow) – Flow class instance.

	raw – Raw data, prevent to use this!

Note

This signal is not called when the player finishes or passes finish line during laps map.

 API Documentation

API Documentation

Modules:

Modules:

	pyplanet.apps

	pyplanet.views

	pyplanet.core.exceptions

	pyplanet.core.instance

	pyplanet.core.ui

	pyplanet.core.storage

	pyplanet.core.events

	pyplanet.god

	pyplanet.contrib.map

	pyplanet.contrib.player

	pyplanet.contrib.command

	pyplanet.contrib.permission

	pyplanet.contrib.setting

	pyplanet.contrib.mode

	pyplanet.contrib.converter

	pyplanet.contrib.chat

	pyplanet.utils

 pyplanet.apps

pyplanet.apps

	
class pyplanet.apps.Apps(instance)[source]

	The apps class contains the context applications, loaded or not loaded in order of declaration or requirements
if given by app configuration.

The apps should contain a configuration class that could be loaded for reading out metadata, options and other
useful information such as description, author, version and more.

	
async check(on_start=False)[source]

	Check and remove unsupported apps based on the current game and script mode. Also loads unloaded apps and try
if the mode and game does support it again.

	
async discover()[source]

	The discover function will discover all models, signals and more
from apps in the right order.

	
async init()[source]

	This method will initiate all apps in order and in series.

	
populate(apps, in_order=False)[source]

	Loads application into the apps registry. Once you populate, the order isn’t yet been decided.
After all imports are done you should shuffle the apps list so it’s in the right order of execution!

	Parameters

	
	apps (list) – Apps list.

	in_order – Is the list already in order?

	
async start()[source]

	This method will start all apps that are previously initiated.

	
async stop()[source]

	This method is executed when the instance is shutting down (will stop all the apps).

	
class pyplanet.apps.AppConfig(app_name, app_module, instance)[source]

	This class is the base class for the Applications metadata class. The class holds information and hooks
that will be executed after initiation for example.

class MyApp(AppConfig):

 async def on_start(self):
 print('we are staring!!')

	
app_dependencies = None

	You can provide a list of dependencies to other apps (each entry needs to be a string of the app label!)

	
game_dependencies = None

	You can provide a list of game dependencies that needs to meet when the app is started. For example you can provide:

game_dependencies = ['trackmania']

You can override this behaviour by defining the following method in your config class

def is_game_supported(self, game):
 return game != 'questmania'

	
human_name = None

	

	
static import_app(entry, instance)[source]

	

	
is_game_supported(game)[source]

	

	
is_mode_supported(mode)[source]

	

	
label = None

	

	
mode_dependencies = None

	You can provide a list of gamemodes that are required to activate the app. Gamemodes needs to be declared as
script names.
You can override this behaviour by defining the following method in your config class

def is_mode_supported(self, mode):
 return mode.lower().startswith('TimeAttack')

	
name = None

	

	
async on_destroy()[source]

	On destroy is being called when unloading the app from the memory.

	
async on_init()[source]

	The on_init will be called before all apps are started (just before the on_ready). This will allow the app
to register things like commands, permissions and other things that are important and don’t require other
apps to be ready.

	
async on_start()[source]

	The on_start call is being called after all apps has been started successfully. You should register any stuff
that is related to any other apps and signals like your self context for signals if they are classmethods.

	
async on_stop()[source]

	The on_stop will be called before stopping the app.

	
path = None

	

	
class pyplanet.apps.config._AppContext(app)[source]

	The app context holds instances of core/contrib components that must be managed on a per app base. Such as the UI
registration and distribution.

	
setting = None

	Setting Contrib Component. See Setting Classes.

	
signals = None

	Signal manager. See Signal Manager.

	
ui = None

	UI Component. See UI Classes.

 pyplanet.views

pyplanet.views

pyplanet.views

	
class pyplanet.views.base.View(manager=None, id=None, version='3', body=None, template=None, timeout=0, hide_click=False, data=None, player_data=None, disable_alt_menu=False, throw_exceptions=False, relaxed_updating=False)[source]

	Base view. The base view will inherit from StaticManiaLink class.

	
async destroy()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

	
destroy_sync()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but will not
be executed at the same time. Be aware with this one!

	
async display(player_logins=None, **kwargs)

	Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

	Parameters

	player_logins – Only display to the list of player logins given.

	
async handle_catch_all(player, action, values, **kwargs)

	Override this class to handle all other actions related to this view/manialink.

	Parameters

	
	player – Player instance.

	action – Action name/string

	values – Values provided by the user client.

	kwargs –
	

	
async hide(player_logins=None)

	Hide manialink globally of only for the logins given in parameter.

	Parameters

	player_logins – Only hide for list of players, None for all players on the server.

	
async render(player_login=None, data=None, player_data=None, template=None)

	Render template. Will render template and return body.

	Parameters

	
	player_login – Render data only for player, set to None to globally render (and ignore player_data).

	data – Data to append.

	player_data – Data to append.

	template (pyplanet.core.ui.template.Template) – Template instance to use.

	Returns

	Body, rendered manialink + script.

	
subscribe(action, target)

	Subscribe to a action given by the manialink.

	Parameters

	
	action – Action name.

	target – Target method.

	Returns

	

	
class pyplanet.views.template.TemplateView(manager=None, id=None, version='3', body=None, template=None, timeout=0, hide_click=False, data=None, player_data=None, disable_alt_menu=False, throw_exceptions=False, relaxed_updating=False)[source]

	The TemplateView will provide a view based on a XML template (ManiaLink for example).
The view contains some class properties that are required to work. Those are described bellow.

To use the TemplateView. Initiate it in your own View class, and override one of the following methods:

	Method get_context_data()

	Return the global context data here.
Make sure you use the super() to retrieve the current context.

	Method get_all_player_data(logins)

	Retrieve the player specific dictionary.
Return dict with player as key and value should contain the data dict.

	Method get_per_player_data(login)

	Retrieve the player specific dictionary per player.
Return dict with the data dict for the specific login (player).

	Method get_template()

	Return the template instance from Jinja2. You mostly should not override this method.

As alternative you can manipulate the instance.data and instance.player_data too.

Properties that are useful to change:

	Prop data

	Global context data. Dict.

	Prop player_data

	Player context data. Dict with player as key.

	Prop hide_click

	Should the manialink disappear after clicking a button/text.

	Prop timeout

	Timeout to hide manialink in seconds.

Example usage:

class AlertView(TemplateView):
 template_name = 'my_app/test.xml' # template should be in: ./my_app/templates/test.xml
 # Some prefixes that can be used in the template_name:
 #
 # - core.views: ``pyplanet.views.templates``.
 # - core.pyplanet: ``pyplanet.apps.core.pyplanet.templates``.
 # - core.maniaplanet: ``pyplanet.apps.core.pyplanet.templates``.
 # - core.trackmania: ``pyplanet.apps.core.trackmania.templates``.
 # - core.shootmania: ``pyplanet.apps.core.shootmania.templates``.
 # - [app_label]: ``[app path]/templates``.

 async def get_context_data(self):
 context = await super().get_context_data()
 context['title'] = 'Sample'
 return context

	
async destroy()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

	
destroy_sync()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but will not
be executed at the same time. Be aware with this one!

	
async display(player_logins=None, **kwargs)[source]

	Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

	Parameters

	player_logins – Only display to the list of player logins given.

	
async get_all_player_data(logins)[source]

	Get all player data, should return dictionary with login as key, and dict as value.

	Parameters

	logins – Login list of players. String list.

	Returns

	Dictionary with data.

	
async get_context_data()[source]

	Get global and local context data, used to render template.

	
async get_per_player_data(login)[source]

	Get data for specific player. Will be called for all players that will render the xml for.

	Parameters

	login (str) – Player login string.

	Returns

	Dictionary or None to ignore.

	
get_player_data()[source]

	Get data per player, return dict with login => data dict.

Deprecated since version 0.4.0: Use get_per_player_data() and get_all_player_data() instead. Will be removed in 0.8.0!

	
async handle_catch_all(player, action, values, **kwargs)

	Override this class to handle all other actions related to this view/manialink.

	Parameters

	
	player – Player instance.

	action – Action name/string

	values – Values provided by the user client.

	kwargs –
	

	
async hide(player_logins=None)

	Hide manialink globally of only for the logins given in parameter.

	Parameters

	player_logins – Only hide for list of players, None for all players on the server.

	
async render(*args, player_login=None, **kwargs)[source]

	Render template for player. This will only render the body and return it. Not send it!

	Parameters

	player_login – Render data only for player, set to None to globally render (and ignore player_data).

	Returns

	Body, rendered manialink + script.

	
subscribe(action, target)

	Subscribe to a action given by the manialink.

	Parameters

	
	action – Action name.

	target – Target method.

	Returns

	

pyplanet.views.generics

	
class pyplanet.views.generics.alert.AlertView(message, size='md', buttons=None, manager=None, target=None, **data)[source]

	The AlertView can be used to show several generic alerts to a player. You can use 3 different sizes, and adjust the
message text.

The 3 sizes:
sm, md and lg.

	
__init__(message, size='md', buttons=None, manager=None, target=None, **data)[source]

	Create an AlertView instance.

	Parameters

	
	message (str) – The message to display to the end-user, Use \n for new lines. You can use symbols from FontAwesome
by using Unicode escaped strings.

	size (str) – Size to use, this parameter should be a string, and one of the following choices:
‘sm’, ‘md’ or ‘lg. Defaults to ‘md’.

	buttons (list) – Buttons to display, Should be an array with dictionary which contain: name.

	manager (pyplanet.core.ui._BaseUIManager) – UI Manager to use, You should always keep this undefined unless you know what your doing!

	target – Target coroutine method called as handle of button clicks.

	
async close(player, **kwargs)[source]

	Close the alert.

	
async wait_for_reaction()[source]

	Wait for reaction or input and return it.

	Returns

	Returns the button clicked or the input value string of the user.

	
class pyplanet.views.generics.alert.PromptView(message, size='md', buttons=None, manager=None, default='', validator=None)[source]

	The PromptView is like the AlertView but can ask for a text entry.

The 3 sizes:
sm, md and lg.

You can listen for the results of the players input with the wait_for_input() async handler (future).
Example:

prompt = PromptView('Please enter your name')
await prompt.display(['login'])

user_input = await prompt.wait_for_input()
print(user_input)

You can do validations before it’s okay with giving a function to the argument validator. Example:

def my_validator(value):
 try:
 int(value)
 return True, None
 except:
 return False, 'Value should be an integer!'

prompt = PromptView('Please enter your name', validator=my_validator)
await prompt.display(['login'])

user_input = await prompt.wait_for_input()
print(user_input)

	
__init__(message, size='md', buttons=None, manager=None, default='', validator=None)[source]

	Create an AlertView instance.

	Parameters

	
	message (str) – The message to display to the end-user, Use \n for new lines. You can use symbols from FontAwesome
by using Unicode escaped strings.

	size (str) – Size to use, this parameter should be a string, and one of the following choices:
‘sm’, ‘md’ or ‘lg. Defaults to ‘md’.

	buttons (list) – Buttons to display, Should be an array with dictionary which contain: name.

	manager (pyplanet.core.ui._BaseUIManager) – UI Manager to use, You should always keep this undefined unless you know what your doing!

	target – Target coroutine method called as handle of button clicks.

	
async wait_for_input()[source]

	Wait for input and return it.

	Returns

	Returns the string value of the user.

	
async pyplanet.views.generics.alert.ask_confirmation(player, message, size='md', buttons=None)[source]

	Ask the player for confirmation and return the button number (0 is first button).

	Parameters

	
	player – Player login or instance.

	message – Message to display.

	size – Size, could be ‘sm’, ‘md’, or ‘lg’.

	buttons – Buttons, optional, default is yes and no.

	Returns

	Number of button that is clicked.

	
async pyplanet.views.generics.alert.ask_input(player, message, size='md', buttons=None, default=None, validator=None)[source]

	Ask the player a question and prompt for input.

	Parameters

	
	player – Player login or instance.

	message – Message to display.

	size – Size, could be ‘sm’, ‘md’, or ‘lg’

	buttons – Buttons, optional, default is ok.

	default – The default and pre-filled value. Default empty.

	validator – Validator method, default is only checking if the input isn’t empty.

	Returns

	Input given by the user.

	
async pyplanet.views.generics.alert.show_alert(player, message, size='md', buttons=None)[source]

	Show an alert to the player with given details. This is a shortcut method for the class itself.

	Parameters

	
	player – Player login or instance.

	message – Message in string.

	size – Size, could be ‘sm’, ‘md’, or ‘lg’.

	buttons – Buttons, optional, default is ‘OK’.

	Returns

	Number of the clicked button. (in Future).

	
class pyplanet.views.generics.list.ListView(*args, **kwargs)[source]

	The ListView is an abstract list that uses a database query to show and manipulate the list that is presented to the
end-user. The ListView is able to automatically manage the searching, ordering and pagination of your query contents.

The columns could be specified, for each column you can change behaviour, such as searchable and sortable. But also
custom rendering of the values that will be displayed.

You can override get_fields(), get_actions(), get_query() if you need any customization or use a self method
or variable in one of your properties.

Note

The design and some behaviour can change in updates of PyPlanet. We aim to provide backward compatibility as much
as we can. If we are going to break things we will make it deprecated, or if we are in a situation of not having
enough time to provide a transition time, we are going to create a separate solution (like a second version).

class SampleListView(ListView):
 query = Model.select()
 model = Model
 title = 'Select your item'
 fields = [
 {'name': 'Name', 'index': 'name', 'searching': True, 'sorting': True},
 {'name': 'Author', 'index': 'author', 'searching': True, 'sorting': True},
]
 actions = [
 {
 'name': 'Delete',
 'action': self.action_delete,
 'style': 'Icons64x64_1',
 'substyle': 'Close'
 },
]

 async def action_delete(self, player, values, instance, **kwargs):
 print('Delete value: {}'.format(instance))

	
__init__(*args, **kwargs)[source]

	Create manialink (USE THE MANAGER CREATE, DONT INIT DIRECTLY!

	Parameters

	
	manager – Manager instance. use your app manager.

	id – Unique manialink id. Could be set later, must be set before displaying.

	version – Version of manialink.

	body – Body of manialink, not including manialink tags!!

	template – Template instance.

	timeout – Timeout to display, hide after the timeout is reached. Seconds.

	hide_click – Hide manialink when click is fired on button.

	data – Data to render. Could also be set later on or controlled separate from this instance.

	player_data – Dict with player login and for value the player specific variables. Dont fill this to have

a global manialink instead of per person.
:param throw_exceptions: Throw exceptions during handling and executing of action handlers.
:param relaxed_updating: Relaxed updating will rate limit the amount of updates send to clients.
:type manager: pyplanet.core.ui.AppUIManager
:type template: pyplanet.core.ui.template.Template
:type id: str
:type version: str
:type timeout: int

	
async close(player, *args, **kwargs)[source]

	Close the link for a specific player. Will hide manialink and destroy data for player specific to save memory.

	Parameters

	player (pyplanet.apps.core.maniaplanet.models.Player) – Player model instance.

	
async display(player=None)[source]

	Display list to player.

	Parameters

	player (str, pyplanet.apps.core.maniaplanet.models.Player) – Player login or model instance.

	
async get_context_data()[source]

	Get global and local context data, used to render template.

	
async handle_catch_all(player, action, values, **kwargs)[source]

	Override this class to handle all other actions related to this view/manialink.

	Parameters

	
	player – Player instance.

	action – Action name/string

	values – Values provided by the user client.

	kwargs –
	

	
async refresh(player, *args, **kwargs)[source]

	Refresh list with current properties for a specific player. Can be used to show new data changes.

	Parameters

	player (pyplanet.apps.core.maniaplanet.models.Player) – Player model instance.

	
single_list = True

	Change this to False to have multiple lists open at the same time.

	
class pyplanet.views.generics.list.ManualListView(data=None, *args, **kwargs)[source]

	The ManualListView will act as a ListView, but not based on a model or query.

	
__init__(data=None, *args, **kwargs)[source]

	Create manialink (USE THE MANAGER CREATE, DONT INIT DIRECTLY!

	Parameters

	
	manager – Manager instance. use your app manager.

	id – Unique manialink id. Could be set later, must be set before displaying.

	version – Version of manialink.

	body – Body of manialink, not including manialink tags!!

	template – Template instance.

	timeout – Timeout to display, hide after the timeout is reached. Seconds.

	hide_click – Hide manialink when click is fired on button.

	data – Data to render. Could also be set later on or controlled separate from this instance.

	player_data – Dict with player login and for value the player specific variables. Dont fill this to have

a global manialink instead of per person.
:param throw_exceptions: Throw exceptions during handling and executing of action handlers.
:param relaxed_updating: Relaxed updating will rate limit the amount of updates send to clients.
:type manager: pyplanet.core.ui.AppUIManager
:type template: pyplanet.core.ui.template.Template
:type id: str
:type version: str
:type timeout: int

	
async get_data()[source]

	Override this method, return a list with dictionaries inside.

 pyplanet.core.exceptions

pyplanet.core.exceptions

	
exception pyplanet.core.exceptions.AppRegistryNotReady[source]

	The registry was not yet ready to invoke

	
exception pyplanet.core.exceptions.ImproperlyConfigured[source]

	The configuration is not given or is invalid.

	
exception pyplanet.core.exceptions.InvalidAppModule[source]

	The given app string is invalid or the app itself is misconfigured!

	
exception pyplanet.core.exceptions.SignalException[source]

	Signal receiver thrown an exception!

	
exception pyplanet.core.exceptions.SignalGlueStop[source]

	Throw this exception inside of your glue method to stop executing the signal.

	
exception pyplanet.core.exceptions.TransportException[source]

	The XML-RPC tunnel got a transport error.

 pyplanet.core.instance

pyplanet.core.instance

PyPlanet Instance Module

This module holds the main instance class of the PyPlanet system.

	
pyplanet.core.instance.Controller = <pyplanet.core.controller._Controller object>

	Controller access point to prevent circular imports. This is a lazy provided way to get the instance from anywhere!
:type Controller: pyplanet.core.Controller
:type: pyplanet.core.Controller

	
class pyplanet.core.instance.Instance(process_name)[source]

	Controller Instance. The very base of the controller, containing class instances of all core components.

	Variables

	
	process_name – Process and pool name.

	loop – AsyncIO Event Loop.

	game – Game Information class.

	apps – Apps component.

	gbx – Gbx component.

	db – Database component.

	storage – Storage component.

	signals – Signal Manager (global). Please use the APP context Signal Manager instead!

	ui_manager – UI Manager (global). Please use the APP context UI Manager instead!

	map_manager – Contrib: Map Manager.

	player_manager – Contrib: Player Manager.

	permission_manager – Contrib: Permission Manager.

	command_manager – Contrib: Command Manager.

	setting_manager – Contrib: Setting Manager. Please use the APP context setting manager instead!

	mode_manager – Contrib. Mode Manager.

	
property performance_mode

	Gives back a boolean, True if we are in performance mode.

	Returns

	Performance mode boolean.

	
start(run_forever=True)[source]

	Start wrapper.

	
stop()[source]

	Stop all the instance apps and managers.

 pyplanet.core.ui

pyplanet.core.ui

	
class pyplanet.core.ui.template.Template(file)[source]

	Template class manages the template file source and the rendering of it.

Will also take care of the loader of the Jinja2 template engine.

Some notable prefixes:

	core.views: pyplanet.views.templates.

	core.pyplanet: pyplanet.apps.core.pyplanet.templates.

	core.maniaplanet: pyplanet.apps.core.pyplanet.templates.

	core.trackmania: pyplanet.apps.core.trackmania.templates.

	core.shootmania: pyplanet.apps.core.shootmania.templates.

	[app_label]: [app path]/templates.

	
class pyplanet.core.ui.AppUIManager(instance, app)[source]

	The App UI manager is here to maintain the context of the app and have it destroy all the listeners when the app
is unloaded.

The UI Properties will be set and hold in the class definition bellow.

	
class pyplanet.core.ui.ui_properties.UIProperties(instance)[source]

	Set the custom Script UI Properties.

Tip

Look at the possible UI Properties right here:

	Trackmania: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#trackmaniauisetproperties

	Shootmania: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties

	TM2020: Undocumented by Nadeo, check in-game tool OpenPlanet and discover what properties exist and what it means.

Access this class with:

self.instance.ui_manager.properties

	
get_attribute(element: str, attribute: str, default=<object object>)[source]

	Get an attribute value of an element.

	Parameters

	
	element – Element name

	attribute – Attribute name

	default – Default if not found.

	Returns

	Boolean if it’s set correctly.

	
get_visibility(element: str, default=<object object>)[source]

	Set the visibility of the UI Property and don’t complain about failing to set. Must be set at the start of the
app(s).

	Parameters

	
	element – Element name, such as notices, map_info and chat.
Full list: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties

	default – The default value, or an exception if not given.

	Returns

	The boolean if it’s visible or raise exception if not exists (or the default if default is given).

	
async reset()[source]

	Reset the UI Properties to the default ManiaPlanet ones.
:return:

	
set_attribute(element: str, attribute: str, value)[source]

	Set an attribute of an element and silent if it’s not found. Useful to change positions but unsure if it will
and still exists. Returns boolean if it’s set successfully.

	Parameters

	
	element – Element name

	attribute – Attribute name

	value – New value of the attribute.

	Returns

	Boolean if it’s set correctly.

	
set_visibility(element: str, visible: bool)[source]

	Set the visibility of the UI Property and don’t complain about failing to set. Must be set at the start of the
app(s).

	Parameters

	
	element – Element name, such as notices, map_info and chat.
Full list: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties

	visible – Boolean if the element should be visible.

	Returns

	Boolean, true if is set, false if failed to set.

	
class pyplanet.core.ui.components.StaticManiaLink(manager=None, id=None, version='3', body=None, template=None, timeout=0, hide_click=False, data=None, player_data=None, disable_alt_menu=False, throw_exceptions=False, relaxed_updating=False)[source]

	The StaticManiaLink is mostly used in PyPlanet for general views. Please use the View classes instead of this
core ui component!

	
async destroy()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

	
destroy_sync()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but will not
be executed at the same time. Be aware with this one!

	
async display(player_logins=None, **kwargs)

	Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

	Parameters

	player_logins – Only display to the list of player logins given.

	
async handle_catch_all(player, action, values, **kwargs)

	Override this class to handle all other actions related to this view/manialink.

	Parameters

	
	player – Player instance.

	action – Action name/string

	values – Values provided by the user client.

	kwargs –
	

	
async hide(player_logins=None)

	Hide manialink globally of only for the logins given in parameter.

	Parameters

	player_logins – Only hide for list of players, None for all players on the server.

	
async render(player_login=None, data=None, player_data=None, template=None)

	Render template. Will render template and return body.

	Parameters

	
	player_login – Render data only for player, set to None to globally render (and ignore player_data).

	data – Data to append.

	player_data – Data to append.

	template (pyplanet.core.ui.template.Template) – Template instance to use.

	Returns

	Body, rendered manialink + script.

	
subscribe(action, target)

	Subscribe to a action given by the manialink.

	Parameters

	
	action – Action name.

	target – Target method.

	Returns

	

	
class pyplanet.core.ui.components.DynamicManiaLink(id)[source]

	The DynamicManiaLink is a special manialink with data-bindings and automatically updates via maniascript.
Please use the View classes instead!

Warning

This feature is not yet implemented.

	
async destroy()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

	
destroy_sync()

	Destroy the Manialink with it’s handlers and references.
Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but will not
be executed at the same time. Be aware with this one!

	
async display(player_logins=None, **kwargs)

	Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

	Parameters

	player_logins – Only display to the list of player logins given.

	
async handle_catch_all(player, action, values, **kwargs)

	Override this class to handle all other actions related to this view/manialink.

	Parameters

	
	player – Player instance.

	action – Action name/string

	values – Values provided by the user client.

	kwargs –
	

	
async hide(player_logins=None)

	Hide manialink globally of only for the logins given in parameter.

	Parameters

	player_logins – Only hide for list of players, None for all players on the server.

	
async render(player_login=None, data=None, player_data=None, template=None)

	Render template. Will render template and return body.

	Parameters

	
	player_login – Render data only for player, set to None to globally render (and ignore player_data).

	data – Data to append.

	player_data – Data to append.

	template (pyplanet.core.ui.template.Template) – Template instance to use.

	Returns

	Body, rendered manialink + script.

	
subscribe(action, target)

	Subscribe to a action given by the manialink.

	Parameters

	
	action – Action name.

	target – Target method.

	Returns

	

	
exception pyplanet.core.ui.exceptions.ManialinkMemoryLeakException[source]

	Is thrown when a memory leak is detected in a view. Raised when a manialink responds to a view, but the view is
vanished for the specified player(s).

	
exception pyplanet.core.ui.exceptions.UIException[source]

	Base exception for UI core component.

	
exception pyplanet.core.ui.exceptions.UIPropertyDoesNotExist[source]

	Thrown when UI Property with element doesn’t exist.

	
class pyplanet.core.ui.loader.PyPlanetLoader[source]

	Lazy loader for the pyplanet jinja2 loader.

 pyplanet.core.storage

pyplanet.core.storage

	
exception pyplanet.core.storage.exceptions.StorageException[source]

	Base storage exception.

	
class pyplanet.core.storage.storage.Storage(instance, driver: pyplanet.core.storage.interface.StorageDriver, config)[source]

	The storage component manager is managing the storage access trough drivers that can be customized.

Warning

Some drivers are work in progress!

	
property driver

	Get the raw driver. Be careful with this!

	Returns

	Driver Instance

	Return type

	pyplanet.core.storage.interface.StorageDriver

	
open(file: str, mode: str = 'rb', **kwargs)[source]

	Open a file on the server. Use relative path to the dedicated root. Use the other open methods to relative
from another base path.

	Parameters

	
	file – Filename/path, relative to the dedicated root path.

	mode – Mode to open, see the python open manual for supported modes.

	Returns

	File handler.

	
open_map(file: str, mode: str = 'rb', **kwargs)[source]

	Open a file on the server. Relative to the Maps folder (UserData/Maps).

	Parameters

	
	file – Filename/path, relative to the dedicated maps folder.

	mode – Mode to open, see the python open manual for supported modes.

	Returns

	File handler.

	
open_match_settings(file: str, mode: str = 'r', **kwargs)[source]

	Open a file on the server. Relative to the MatchSettings folder (UserData/Maps/MatchSettings).

	Parameters

	
	file – Filename/path, relative to the dedicated matchsettings folder.

	mode – Mode to open, see the python open manual for supported modes.

	Returns

	File handler.

	
async remove_map(file: str)[source]

	Remove a map file with filename given.

	Parameters

	file – Filename, relative to Maps folder.

pyplanet.core.storage.drivers

	
class pyplanet.core.storage.drivers.local.LocalDriver(instance, config: dict = None)[source]

	Local storage driver is using the Python build-in file access utilities for accessing a local storage-like system.

	Option BASE_PATH

	Override the maniaplanet given base path.

	
class pyplanet.core.storage.drivers.asyncssh.SFTPDriver(instance, config: dict = None)[source]

	SFTP storage driver is using the asyncssh module to access storage that is situated remotely.

Warning

This driver is not ready for production use!!

	Option HOST

	Hostname of destinotion server.

	Option PORT

	Port destinotion server.

	Option USERNAME

	Username of the user account.

	Option PASSWORD

	Password of the user account. (optional if you use public/private keys).

	Option KNOWN_HOSTS

	File to the Known Hosts file.

	Option CLIENT_KEYS

	Array with client private keys.

	Option PASSPHRASE

	Passphrase to unlock private key(s).

	Option KWARGS

	Any other options that will be passed to asyncssh.

	
connect_sftp()[source]

	Get sftp client.

	Returns

	Sftp client.

	Return type

	asyncssh.SFTPClient

 pyplanet.core.events

pyplanet.core.events

The events manager contains the class that manages custom and abstract callbacks into the system callbacks.
Once a signals is registered here it could be used by string reference. This makes it easy to have dynamically signals
being created by other apps in a single place so it could be used over all apps.

For example you would create your own custom signal if you have a app for your own created game mode script that abstracts
all the raw XML-RPC events into nice structured and maybe even including fetched data from external sources.

	
class pyplanet.core.events.manager._SignalManager[source]

	Signal Manager class.

Note

Access this in the app via self.context.signals.

	
create_app_manager(app)[source]

	This method will create the manager instance for the app context.

	Parameters

	app (pyplanet.apps.config.AppConfig) – App instance.

	Returns

	SignalManager instance for the app.

	Return type

	pyplanet.core.events.manager.AppSignalManager

	
finish_reservations()[source]

	The method will copy all reservations to the actual signals. (PRIVATE)

	
async finish_start(*args, **kwargs)[source]

	Finish startup the core, this will copy reservations. (PRIVATE).

	
get_callback(call_name)[source]

	Get signal by XML-RPC (script) callback.

	Parameters

	call_name – Callback name.

	Returns

	Signal class or nothing.

	Return type

	pyplanet.core.events.Signal

	
get_signal(key)[source]

	Get signal by key (namespace:code).

	Parameters

	key – namespace:code key.

	Returns

	signal or none

	Return type

	pyplanet.core.events.Signal

	
init_app(app)[source]

	Initiate app, load all signal/callbacks files. (just import, they should register with decorators).

	Parameters

	app (pyplanet.apps.AppConfig) – App instance

	
listen(signal, target, conditions=None, **kwargs)[source]

	Register a listing client to the signal given (signal instance or string).

	Parameters

	
	signal – Signal instance or string: “namespace:code”

	target – Target method to call.

	conditions – Reserved for future purposes.

	
register_signal(signal, app=None, callback=False)[source]

	Register a signal to be known in the signalling system.

	Parameters

	
	signal – Signal(s)

	app – App context/instance.

	callback – Will a callback handle the response (mostly raw callbacks).

pyplanet.core.events.callback

This file contains a glue between core callbacks and desired callbacks.

	
class pyplanet.core.events.callback.Callback(call, namespace, code, target=None)[source]

	A callback signal is an double signal. Once for the GBX Callback itself (the Gbx callback named). And the destination
Between those two signals is a sort of processor that confirms it into the PyPlanet style objects.

For example, a player connect will result in a player database object instead of the plain Maniaplanet payload.
This will make it possible to develop your app as fast as possible, without any overhead and make it better
with callback payload changes!

	
async glue(signal, source, **kwargs)[source]

	The glue method converts the source signal (gbx callback) into the pyplanet signal.

	
async pyplanet.core.events.callback.handle_generic(source, signal, **kwargs)[source]

	The handle_generic is a simple handle (processing glue) for just forwarding the payload from the maniaplanet
server into the signal payload.

pyplanet.core.events.dispatcher

This file has been forked from Django and PyDispatcher.
The PyDispatcher is licensed under BSD.

	
class pyplanet.core.events.dispatcher.Signal(code=None, namespace=None, process_target=None, use_caching=False)[source]

	A signal is a destination tho distribute to where multiple listeners get the message. (event distribution).

	
class Meta[source]

	The meta-class contains the code of the signal, used for string notation.
An optional namespace could be given to override the app label namespace.

Warning

Only change or access this if you override the Signal class in your own class.

	
has_listeners()[source]

	Has the signal listeners.

	Returns

	

	
async process(**data)[source]

	This method processed data into abstract data. You can give your own function in the init of the Signal or
override the method.

	Parameters

	data – Raw data input

	Returns

	Parsed data output

	
register(receiver, weak=True, dispatch_uid=None)[source]

	Connect receiver to sender for signal.

	Parameters

	
	receiver – A function or an instance method which is to receive signals. Receivers must be hashable objects.
If weak is True, then receiver must be weak referenceable.Receivers must be able to accept keyword arguments.
If a receiver is connected with a dispatch_uid argument, it
will not be added if another receiver was already connected with that dispatch_uid.

	weak – Whether to use weak references to the receiver. By default, the
module will attempt to use weak references to the receiver
objects. If this parameter is false, then strong references will
be used.

	dispatch_uid – An identifier used to uniquely identify a particular instance of
a receiver. This will usually be a string, though it may be anything hashable.

	
async send(source, raw=False, catch_exceptions=False, gather=True)[source]

	Send signal with source.
If any receiver raises an error, the error propagates back through send,
terminating the dispatch loop. So it’s possible that all receivers
won’t be called if an error is raised.

	Parameters

	
	source – The data to be send to the processor which produces data that will be send to the receivers.

	raw – Optional bool parameter to just send the source to the receivers without any processing.

	catch_exceptions – Catch and return the exceptions.

	gather – Execute multiple receivers at the same time (parallel). On by default!

	Returns

	Return a list of tuple pairs [(receiver, response), …].

	
async send_robust(source=None, raw=False, gather=True)[source]

	Send signal from sender to all connected receivers catching errors.

	Parameters

	
	source – The data to be send to the processor which produces data that will be send to the receivers.

	raw – Optional bool parameter to just send the source to the receivers without any processing.

	gather – Execute multiple receivers at the same time (parallel). On by default!

	Returns

	Return a list of tuple pairs [(receiver, response), …].
If any receiver raises an error (specifically any subclass of Exception),
return the error instance as the result for that receiver.

	
set_self(receiver, slf)[source]

	Set the self instance on a receiver.

Deprecated since version 0.0.1.

	Parameters

	
	receiver – Receiver function.

	slf – Self instance

	
unregister(receiver=None, dispatch_uid=None)[source]

	Disconnect receiver from sender for signal.
If weak references are used, disconnect need not be called. The receiver
will be removed from dispatch automatically.

	Parameters

	
	receiver – The registered receiver to disconnect. May be none if dispatch_uid is specified.

	dispatch_uid – the unique identifier of the receiver to disconnect

 pyplanet.god

pyplanet.god

Error

This package is strictly private and should not be changed inside of one of your apps/customizations!

	
class pyplanet.god.pool.EnvironmentPool(pool_names, max_restarts=0, options=None)[source]

	This class manages the pool instances for the current environment/installation.

Warning

You should not have to use this class in any moment!

	
populate()[source]

	Populate the pool instance processes, (prepares the processes).

	
restart(name=None)[source]

	Restart single process, or all if no name is given.

	Parameters

	name – Name or none for all pools.

	
shutdown()[source]

	Shutdown all processes.

	
start()[source]

	Start all processes.

	
watchdog()[source]

	Watch all the processes. (Blocking method!).

	
class pyplanet.god.process.InstanceProcess(queue, environment_name='default', pool=None, options=None)[source]

	The InstanceProcess is the encapsulation around the real controller instance.

Warning

This code is still being executed at the main process!!

	
property did_die

	Boolean determinating if the process did die.

	
property exitcode

	Exit code of process.

	Returns

	Exit code.

	
graceful()[source]

	Graceful shutdown the process.

	
is_alive()[source]

	Call process method is_alive()

	
shutdown()[source]

	Shutdown (terminate) process.

	
start()[source]

	Start the process.

	
property will_restart

	Boolean: Is the process able to restart (not reached max_restarts).

 pyplanet.contrib.map

pyplanet.contrib.map

The map contrib will provide map list and information to the apps and core.

	
class pyplanet.contrib.map.MapManager(instance)[source]

	Map Manager. Manages the current map pool and the current and next map.

Todo

Write introduction.

Warning

Don’t initiate this class yourself.

	
async add_map(filename, insert=True, save_matchsettings=True)[source]

	Add or insert map to current online playlist.

	Parameters

	
	filename (str) – Load from filename relative to the ‘Maps’ directory on the dedicated host server.

	insert (bool) – Insert after the current map, this will make it play directly after the current map. True by default.

	save_matchsettings (bool) – Save match settings as well.

	Raise

	pyplanet.contrib.map.exceptions.MapIncompatible

	Raise

	pyplanet.contrib.map.exceptions.MapException

	
property current_map

	The current map, database model instance.

	Return type

	pyplanet.apps.core.maniaplanet.models.Map

	
async extend_ta(extend_with=None)[source]

	Extend time limit of the current map.
Extend with given seconds, or double the original TA timer if None is given.

	Parameters

	extend_with (int) – Extend with the given seconds, or None for adding the original TA limit to the current limit(double)

	Returns

	

	
async get_map(uid=None)[source]

	Get map instance by uid.

	Parameters

	uid – By uid (pk).

	Returns

	Player or exception if not found

	
async get_map_by_index(index)[source]

	Get map instance by index id (primary key).

	Parameters

	index – Primary key index.

	Returns

	Map instance or raise exception.

	
async handle_map_change(info)[source]

	This will be called from the glue that creates the signal ‘maniaplanet:map_begin’ or ‘map_end’.

	Parameters

	info – Mapinfo in dict.

	Returns

	Map instance.

	Return type

	pyplanet.apps.core.maniaplanet.models.map.Map

	
async load_matchsettings(filename)[source]

	Load Match Settings file and insert it into the current map playlist.

	Parameters

	filename – File to load, relative to Maps folder.

	Returns

	Boolean if loaded.

	
property maps

	Get the maps that are currently loaded on the server. The list should contain model instances of the currently
loaded matchsettings. This list should be up-to-date.

	Return type

	list

	
property next_map

	The next scheduled map.

	Return type

	pyplanet.apps.core.maniaplanet.models.Map

	
playlist_has_map(uid)[source]

	Check if our current playlist has a map with the UID given.

	Parameters

	uid – UID String

	Returns

	Boolean, True if it’s in our current playlist (match settings in our session).

	
property previous_map

	The previously played map, or None if not known!

	Return type

	pyplanet.apps.core.maniaplanet.models.Map

	
async remove_map(map, delete_file=False)[source]

	Remove and optionally delete file from server and playlist.

	Parameters

	
	map – Map instance or filename in string.

	delete_file (bool) – Boolean to decide if we are going to remove the file from the server too. Defaults to False.

	Raise

	pyplanet.contrib.map.exceptions.MapException

	Raise

	pyplanet.core.storage.exceptions.StorageException

	
async save_matchsettings(filename=None)[source]

	Save the current playlist and configuration to the matchsettings file.

	Parameters

	filename (str) – Give the filename of the matchsettings, Leave empty to use the current loaded and configured one.

	Raise

	pyplanet.contrib.map.exceptions.MapException

	Raise

	pyplanet.core.storage.exceptions.StorageException

	
async set_current_map(map)[source]

	Set the current map and jump to it.

	Parameters

	map – Map instance or uid.

	
async set_next_map(map)[source]

	Set the next map. This will prepare the manager to set the next map and will communicate the next map to the
dedicated server.

The Map parameter can be a map instance or the UID of the map.

	Parameters

	map (pyplanet.apps.core.maniaplanet.models.Map, str) – Map instance or UID string.

	
async upload_map(fh, filename, insert=True, overwrite=False)[source]

	Upload and add/insert the map to the current online playlist.

	Parameters

	
	fh – File handler, bytesio object or any readable context.

	filename (str) – The filename when saving on the server. Must include the map.gbx! Relative to ‘Maps’ folder.

	insert (bool) – Insert after the current map, this will make it play directly after the current map. True by default.

	overwrite (bool) – Overwrite current file if exists? Default False.

	Raise

	pyplanet.contrib.map.exceptions.MapIncompatible

	Raise

	pyplanet.contrib.map.exceptions.MapException

	Raise

	pyplanet.core.storage.exceptions.StorageException

	
exception pyplanet.contrib.map.exceptions.MapException[source]

	Generic map exception by manager.

	
exception pyplanet.contrib.map.exceptions.MapIncompatible[source]

	The map you want to add/insert/upload is invalid and not suited for the current server config.

	
exception pyplanet.contrib.map.exceptions.MapNotFound[source]

	Map not found

	
exception pyplanet.contrib.map.exceptions.ModeIncompatible[source]

	The current mode doesn’t support the given action.

 pyplanet.contrib.player

pyplanet.contrib.player

The player contrib will provide player list and information to the apps and core.

	
class pyplanet.contrib.player.PlayerManager(instance)[source]

	Player Manager.

You can access this class in your app with:

self.instance.player_manager

With the manager you can get several useful information about the players on the server. See all the properties and methods
below for more information.

Warning

Don’t initiate this class yourself.

	
property count_all

	Get all player counts (players + spectators).

	
property count_players

	Get number of playing players.

	
property count_spectators

	Get number of spectating players.

	
async get_player(login=None, pk=None, lock=True)[source]

	Get player by login or primary key.

	Parameters

	
	login – Login.

	pk – Primary Key identifier.

	lock – Lock for a sec when receiving.

	Returns

	Player or exception if not found

	Return type

	pyplanet.apps.core.maniaplanet.models.Player

	
async get_player_by_id(identifier)[source]

	Get player object by ID.

	Parameters

	identifier – Identifier.

	Returns

	Player object or None

	
async handle_connect(login)[source]

	Handle a connection of a player, this call is being called inside of the Glue of the callbacks.

	Parameters

	login – Login, received from dedicated.

	Returns

	Database Player instance.

	Return type

	pyplanet.apps.core.maniaplanet.models.Player

	
async handle_disconnect(login)[source]

	Handle a disconnection of a player, this call is being called inside of the Glue of the callbacks.

	Parameters

	login – Login, received from dedicated.

	Returns

	Database Player instance.

	Return type

	pyplanet.apps.core.maniaplanet.models.Player

	
async load_blacklist(filename=None)[source]

	Load blacklist file.

	Parameters

	filename – File to load or will get from settings.

	Raise

	pyplanet.core.exceptions.ImproperlyConfigured

	Raise

	pyplanet.core.storage.exceptions.StorageException

	Returns

	Boolean if loaded.

	
async load_guestlist(filename=None)[source]

	Load guestlist file.

	Parameters

	filename – File to load or will get from settings.

	Raise

	pyplanet.core.exceptions.ImproperlyConfigured

	Raise

	pyplanet.core.storage.exceptions.StorageException

	Returns

	Boolean if loaded.

	
async map_loaded(*args, **kwargs)[source]

	Reindex the current number of players and spectators.

	Parameters

	
	args –

	kwargs –

	Returns

	

	
property max_players

	Get maximum number of players.

	
property max_spectators

	Get maximum number of spectators.

	
async on_start()[source]

	Handle startup, just before the apps will start. We will throw connects for the players so we know that the
current playing players are also initiated correctly!

	
property online

	Online player list.

	
property online_logins

	Online player logins list.

	
async save_blacklist(filename=None)[source]

	Save the current blacklisted players to file given or fetch from config.

	Parameters

	filename (str) – Give the filename of the blacklist, Leave empty to use the current loaded and configured one.

	Raise

	pyplanet.core.exceptions.ImproperlyConfigured

	Raise

	pyplanet.core.storage.exceptions.StorageException

	
async save_guestlist(filename=None)[source]

	Save the current guestlisted players to file given or fetch from config.

	Parameters

	filename (str) – Give the filename of the guestlist, Leave empty to use the current loaded and configured one.

	Raise

	pyplanet.core.exceptions.ImproperlyConfigured

	Raise

	pyplanet.core.storage.exceptions.StorageException

Exceptions for Map Manager.

	
exception pyplanet.contrib.player.exceptions.PlayerNotFound[source]

	Player not found

 pyplanet.contrib.command

pyplanet.contrib.command

The commands contributed package contains command management and callback logic.

	
class pyplanet.contrib.command.CommandManager(instance)[source]

	The Command Manager contributed extension is a manager that controls all chat-commands in the game.
Your app needs to use this manager to register any custom commands you want to provide.

You should access this class within your app like this:

self.instance.command_manager

You can register your commands like this:

await self.instance.command_manager.register(
 Command(command='reboot', target=self.reboot_pool, perms='admin:reboot', admin=True),
)

More information of the command and the options of it, see the pyplanet.contrib.command.Command class.

Warning

Don’t initiate this class yourself. Access this class from the self.instance.command_manager instance.

	
async execute(player, command, *args)[source]

	Execute a command for the given player with the given args.

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player instance.

	command (pyplanet.contrib.command.command.Command) – Command instance.

	args – Args for the command, will be concat into a string with spaces.

	Returns

	

	
async get_command_by_command_text(command)[source]

	Get command by command text. (Used in the /help command)

	Parameters

	command – Command entry, array of strings (split by spaces).

	Returns

	Command object.

	
async help_entries(player, admin_only)[source]

	Get all help entries for the player.

	Parameters

	
	player – Player instance.

	admin_only – Only the admin commands or non-admin. True for admin only, False for player only.
Will filter on permissions of the player as well!

	Returns

	List of commands objects.

	
async register(*commands)[source]

	Register your command.

	Parameters

	commands (pyplanet.contrib.command.command.Command) – Command instance.

	
class pyplanet.contrib.command.Command(command, target, aliases=None, admin=False, namespace=None, parser=None, perms=None, description=None)[source]

	The command instance describes the command itself, the target to fire and all other related information, like
admin command or aliases.

Some examples of some commands:

Admin command with permission on it.
Command(command='reboot', target=self.reboot_pool, perms='admin:reboot', admin=True)

Normal user command with optional argument.
Command(command='list', target=self.show_map_list) .add_param(name='search', required=False)

	
add_param(name: str, nargs=1, type=<class 'str'>, default=None, required: bool = True, help: str = None, dest: str = None)[source]

	Add positional parameter.

	Parameters

	
	name – Name of parameter, will be used to store result into!

	nargs – Number of arguments, use integer or ‘*’ for multiple or infinite.

	type – Type of value, keep str to match all types. Use any other to try to parse to the type.

	default – Default value when no value is given.

	required – Set the parameter required state, defaults to true.

	help – Help text to display when parameter is invalid or not given and required.

	dest – Destination to save into namespace result (defaults to name).

	Returns

	parser instance

	Return type

	pyplanet.contrib.command.command.Command

	
get_params(input)[source]

	Get params in array from input in array.

	Parameters

	input (list) – Array of raw input.

	Returns

	Array of parameters, stripped of the command name and namespace, if defined.

	Return type

	list

	
async handle(instance, player, argv)[source]

	Handle command parsing and execution.

	Parameters

	
	player (pyplanet.apps.core.maniaplanet.models.player.Player) – Player object.

	argv – Arguments in array

	
async has_permission(instance, player)[source]

	Checks whether the provided player has the permission to execute this command.
:param instance: Controller Instance
:type instance: pyplanet.core.instance.Instance
:param player: Player requesting execution of this command.
:type player: pyplanet.apps.core.maniaplanet.models.player.Player
:return: Whether provided player has permission to execute this command.

	
match(raw)[source]

	Try to match the command with the given input in array style (splitted by spaces).

	Parameters

	raw (list) – Raw input, split by spaces.

	Returns

	Boolean if command matches.

	
property usage_text

	The usage text line for the command.

	
class pyplanet.contrib.command.ParameterParser(prog=None)[source]

	Parameter Parser.

Todo

Write introduction + examples.

	
add_param(name: str, nargs=1, type=<class 'str'>, default=None, required: bool = True, help: str = None, dest: str = None)[source]

	Add positional parameter.

	Parameters

	
	name – Name of parameter, will be used to store result into!

	nargs – Number of arguments, use integer or ‘*’ for multiple or infinite.

	type – Type of value, keep str to match all types. Use any other to try to parse to the type.

	default – Default value when no value is given.

	required – Set the parameter required state, defaults to true.

	help – Help text to display when parameter is invalid or not given and required.

	dest – Destination to save into namespace result (defaults to name).

	Returns

	parser instance

	Return type

	pyplanet.contrib.command.ParameterParser

	
property errors

	Get errors.

	Returns

	array of strings.

	Return type

	list

	
is_valid()[source]

	Is data valid?

	Returns

	boolean

	
parse(argv)[source]

	Parse arguments.

	Parameters

	argv – arguments.

	
parse_parameter(param, input, position)[source]

	Validate and parse param value at input position.

	Parameters

	
	param (dict) – Param dict given.

	input (list) – Full params input (without command or namespace!)

	position (int) – Current seek position.

	Returns

	value.

	
exception pyplanet.contrib.command.exceptions.InvalidParamException[source]

	Invalid parameter arguments given!

	
exception pyplanet.contrib.command.exceptions.NotValidated[source]

	Your parser hasn’t been called with .parse() before, so no parsing took place!

	
exception pyplanet.contrib.command.exceptions.ParamException[source]

	

	
exception pyplanet.contrib.command.exceptions.ParamParseException[source]

	

	
exception pyplanet.contrib.command.exceptions.ParamValidateException[source]

	

 pyplanet.contrib.permission

pyplanet.contrib.permission

The permission contrib will provide permission abilities to players and admin levels.

	
class pyplanet.contrib.permission.PermissionManager(instance)[source]

	Permission Manager manges the permissions of all apps and players.

Todo

Write introduction.

Warning

Don’t initiate this class yourself.

	
async get_perm(namespace, name)[source]

	Get permission by namespace and name.

	Parameters

	
	namespace (str) – Namespace of the permission

	name (str) – Name of the permission.

	
async has_permission(player, permission)[source]

	Check if the player has the right permission.

	Parameters

	
	player – player instance.

	permission – permission name.

	Returns

	boolean if player is allowed.

	
async on_start()[source]

	Handle startup, just before the apps will start. We will make sure we are ready to get requests for permissions.

	
async register(name, description='', app=None, min_level=1, namespace=None)[source]

	Register a new permission.

	Parameters

	
	name – Name of permission

	description – Description in english.

	app – App instance to retrieve the label.

	min_level – Minimum level required.

	namespace – Namespace, only for core usage!

	Returns

	Permission instance.

 pyplanet.contrib.setting

pyplanet.contrib.setting

	
class pyplanet.contrib.setting.manager.AppSettingManager(instance, app)[source]

	The local app setting manager is the one you should use to register settings to inside of your app.

You can use this manager like this:

from pyplanet.contrib.setting import Setting

async def on_start(self):
 await self.context.setting.register(
 Setting('feature_a', 'Enable feature A', Setting.CAT_FEATURES, type=bool, description='Enable feature A'),
 Setting('feature_b', 'Enable feature B', Setting.CAT_FEATURES, type=bool, description='Enable feature B'),
)

For more information about the settings, categories, types, and all other options. Look at the Settings
documentation.

Warning

Don’t initiate this class yourself.

	
async get_all(prefetch_values=True)[source]

	Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not recommended).

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
get_categories()[source]

	Get all the categories we have registered.
Returns a dict with label as key, and count + name as values.

	
async get_setting(key, prefetch_values=True)[source]

	Get setting by key and optionally fetch the value if not yet fetched.

	Parameters

	
	key – Key string

	prefetch_values – Prefetch the values if not yet fetched?

	Returns

	Setting instance.

	Raise

	SettingException

	
async register(*settings)[source]

	Register your setting(s). This will create default values when the setting has not yet been inited before.

	Parameters

	settings (pyplanet.contrib.setting.setting._Setting) – Setting(s) given.

	
class pyplanet.contrib.setting.manager.GlobalSettingManager(instance)[source]

	Global Setting manager is available at the instance. instance.setting_manager.

Warning

Don’t use the setting_manager for registering app settings! Use the app setting manager instead!

Don’t initiate this class yourself.

	
create_app_manager(app_config)[source]

	Create app setting manager.

	Parameters

	app_config (pyplanet.apps.config.AppConfig) – App Config instance.

	Returns

	Setting Manager

	Return type

	pyplanet.contrib.setting.manager.AppSettingManager

	
async get_all(prefetch_values=True)[source]

	Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not recommended).

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
get_app_manager(app)[source]

	Get the app manager for a specified app label or config instance.

	Parameters

	app – App label in string or the app config instance.

	Returns

	App manager instance.

	Return type

	pyplanet.contrib.setting.manager.AppSettingManager

	
async get_apps(prefetch_values=True)[source]

	Get all the app label + names for all the settings we can find in our registry.
Returns a dict with label as key, and count + name as values.

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
async get_categories(prefetch_values=True)[source]

	Get all the categories we have registered.
Returns a dict with label as key, and count + name as values.

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
async get_setting(app_label, key, prefetch_values=True)[source]

	Get setting by key and optionally fetch the value if not yet fetched.

	Parameters

	
	app_label – Namespace (mostly app label).

	key – Key string

	prefetch_values – Prefetch the values if not yet fetched?

	Returns

	Setting instance.

	Raise

	SettingException

	
property recursive_settings

	Retrieve all settings, of all submanagers.

The setting contrib contains code for managing and providing settings contexts.

	
class pyplanet.contrib.setting.Setting(key: str, name: str, category: str, type=<class 'str'>, description: str = None, choices=None, default=None, change_target=None)[source]

	The setting class is for defining a setting for the end-user.
This setting can be changed with /settings and //settings.

With this class you can define or manage your setting that is going to be public for all other apps and end-user.

You can get notified of changes with the change_target in the init of this class. Point this to a method (async or sync)
with the following params: old_value and new_value.

Example:

my_setting = Setting(
 'dedimania_code', 'Dedimania Server Code', Setting.CAT_KEYS, type=str,
 description='The secret dedimania code. Get one at $lhttp://dedimania.net/tm2stats/?do=register',
 default=None
)

my_other_setting = Setting(
 'sample_boolean', 'Booleans for the win!', Setting.CAT_BEHAVIOUR, type=bool, description='Example',
)

	
__init__(key: str, name: str, category: str, type=<class 'str'>, description: str = None, choices=None, default=None, change_target=None)[source]

	Create setting with properties.

	Parameters

	
	key – Key of setting, this is mainly only used for the backend and for referencing the setting.
You should keep this unique in your app!

	name – Name of the setting that will be displayed as a small label to the player.

	category – Category from Categories.*. Must be provided!

	type – Type of value to expect, use python types here. str by default.

	description – Description to provide help and instructions to the player.

	choices – List or tuple with choices, only when wanting to restrict values to selected options.

	default – Default value if not provided from database. This will be returned. Defaults to None.

	change_target – Target method to call when the setting value has been changed.

	
__str__()[source]

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
async clear()[source]

	Clear the value in the data storage. This will set the value to None, and will return the default value on
request of data.

	Raise

	NotFound / SerializationException

	
async get_model()[source]

	Get the model for the setting. This will return the model instance or raise an exception when not found.

	Returns

	Model instance

	Raise

	NotFound

	
async get_value(refresh=False)[source]

	Get the value or the default value for the setting model.

	Parameters

	refresh – Force a refresh of the value.

	Returns

	Value in the desired type and unserialized from database/storage.

	Raise

	NotFound / SerializationException

	
async initiate_setting()[source]

	Initiate database record for setting.

	
serialize_value(value)[source]

	Serialize the python value to the data store value, based on the type of the setting.

	Parameters

	value – Python Value.

	Returns

	Database Value

	
async set_value(value)[source]

	Set the value, this will serialize and save the setting to the data storage.

	Parameters

	value – Python value input.

	Raise

	NotFound / SerializationException

	
property type_name

	Get the name of the specified type in string format, suited for displaying to end-user.

	Returns

	User friendly name of type.

	
unserialize_value(value)[source]

	Unserialize the datastorage value to the python value, based on the type of the setting.

	Parameters

	value – Value from database.

	Returns

	Python value.

	Raises

	pyplanet.contrib.setting.exceptions.SerializationException – SerializationException

	
class pyplanet.contrib.setting.GlobalSettingManager(instance)[source]

	Global Setting manager is available at the instance. instance.setting_manager.

Warning

Don’t use the setting_manager for registering app settings! Use the app setting manager instead!

Don’t initiate this class yourself.

	
__init__(instance)[source]

	Initiate, should only be done from the core instance.

	Parameters

	instance (pyplanet.core.instance.Instance) – Instance.

	
create_app_manager(app_config)[source]

	Create app setting manager.

	Parameters

	app_config (pyplanet.apps.config.AppConfig) – App Config instance.

	Returns

	Setting Manager

	Return type

	pyplanet.contrib.setting.manager.AppSettingManager

	
async get_all(prefetch_values=True)[source]

	Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not recommended).

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
get_app_manager(app)[source]

	Get the app manager for a specified app label or config instance.

	Parameters

	app – App label in string or the app config instance.

	Returns

	App manager instance.

	Return type

	pyplanet.contrib.setting.manager.AppSettingManager

	
async get_apps(prefetch_values=True)[source]

	Get all the app label + names for all the settings we can find in our registry.
Returns a dict with label as key, and count + name as values.

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
async get_categories(prefetch_values=True)[source]

	Get all the categories we have registered.
Returns a dict with label as key, and count + name as values.

	Parameters

	prefetch_values – Prefetch the values in this call. Defaults to True.

	Returns

	List with setting objects.

	
async get_setting(app_label, key, prefetch_values=True)[source]

	Get setting by key and optionally fetch the value if not yet fetched.

	Parameters

	
	app_label – Namespace (mostly app label).

	key – Key string

	prefetch_values – Prefetch the values if not yet fetched?

	Returns

	Setting instance.

	Raise

	SettingException

	
property recursive_settings

	Retrieve all settings, of all submanagers.

Exceptions for Setting Manager.

	
exception pyplanet.contrib.setting.exceptions.SerializationException[source]

	Setting value (un)serialization problems

	
exception pyplanet.contrib.setting.exceptions.SettingException[source]

	Abstract setting exception.

	
exception pyplanet.contrib.setting.exceptions.TypeUnknownException[source]

	The type is unknown.

 pyplanet.contrib.mode

pyplanet.contrib.mode

Mode contrib is managing mode settings and ui settings for the script mode.

	
class pyplanet.contrib.mode.ModeManager(instance)[source]

	Mode Manager manges the script, script settings and the mode UI settings of the current game mode.

Warning

Don’t initiate this class yourself. Use instance.mode_manager for an static instance.

	
async get_current_full_script(refresh=False)[source]

	Get the current full script name.

	Parameters

	refresh – Refresh from server.

	
async get_current_script(refresh=False)[source]

	Get the current script name.

	Parameters

	refresh – Refresh from server.

	
async get_current_script_info()[source]

	Get the script info as a structure containing: Name, CompatibleTypes, Description, Version and the settings available.

	
async get_next_full_script(refresh=False)[source]

	Get the next full script name.

	Parameters

	refresh – Refresh from server.

	
async get_next_script(refresh=False)[source]

	Get the next script name.

	Parameters

	refresh – Refresh from server.

	
async get_settings()[source]

	Get the current mode settings as a dictionary.

	
async get_variables()[source]

	Get the mode script variables.

	
async on_start()[source]

	Handle startup, just before the apps will start. We will make sure we are ready to get requests for permissions.

	
async set_next_script(name)[source]

	Set the next played script name (after map restart/skip).

	Parameters

	name – Name

	
async update_next_settings(update_dict)[source]

	Queue setting changes for the next script (that will be active after restart).

	Parameters

	update_dict – The dictionary with the partial updated keys and values.

	
async update_next_variables(update_dict)[source]

	Queue variable changes for the next script (that will be active after restart).

	Parameters

	update_dict – The dictionary with the partial updated keys and values.

	
async update_settings(update_dict)[source]

	Update the current settings, merges current settings with the provided settings. Replaces by the keys you give
if the data already exists.

	Parameters

	update_dict – The dictionary with the partial updated keys and values.

	
async update_variables(update_dict)[source]

	Update the current variables, merges current vars with the provided vars. Replaces by the keys you give
if the data already exists.

	Parameters

	update_dict – The dictionary with the partial updated keys and values.

Signals

This file contains the contrib mode signals, related to the current script/mode.

	
pyplanet.contrib.mode.signals.script_mode_changed = <pyplanet.core.events.dispatcher.Signal object>

	Is called after a new script has been loaded and became active!. Reporting two parameters:

	Parameters

	
	unloaded_script – Old script name.

	loaded_script – New and just loaded script.

 pyplanet.contrib.converter

pyplanet.contrib.converter

Converter contrib is managing migrating from another controller.

	
class pyplanet.contrib.converter.base.BaseConverter(instance, db_type, db_host, db_name, db_user=None, db_password=None, db_port=None, prefix=None, charset='utf8')[source]

	Base Converter is the abstract converter class.

Please take a look at the other classes bellow.

	
class pyplanet.contrib.converter.xaseco2.Xaseco2Converter(*args, **kwargs)[source]

	The XAseco2 Converter uses MySQL to convert the data to the new PyPlanet structure.

Please take a look at Migrating from other controllers pages for information on how to use
this.

	
class pyplanet.contrib.converter.uaseco.UasecoConverter(*args, **kwargs)[source]

	The UAseco Converter uses MySQL to convert the data to the new PyPlanet structure.

Please take a look at Migrating from other controllers pages for information on how to use
this.

 pyplanet.contrib.chat

pyplanet.contrib.chat

Sending chat messages

We implemented an abstraction that will provide auto multicall and auto prefixing for you. You can use the following
statements for example:

Send chat message to all players.
await self.instance.chat('Test')

Send chat message to specific player or multiple players.
await self.instance.chat('Test', 'player_login') # Sends to single player.
await self.instance.chat('Test', 'player_login', player_instance) # Sends to both players.

Execute in chain (Multicall).
await self.instance.chat.execute(
 'global_message',
 self.instance.chat('Test', 'player_login'),
 self.instance.chat('Test2', 'player_login2'),
)

You can combine this with other calls in a GBX multicall:
await self.instance.gbx.multicall(
 self.instance.gbx.prepare('SetServerName', 'Test'),
 self.instance.chat('Test2', 'player_login2'),
)

API Documentation

The chat contrib makes it possible to send chat messages way more easy and faster. It also maintains some other features
related to the chat.

	
class pyplanet.contrib.chat.ChatManager(instance)[source]

	The Chat manager is available with: instance.chat shortcut.

	
async execute(*queries)[source]

	Execute and send one or multiple chat messages (prepared queries or raw strings) with a multicall.

	Parameters

	queries – One or more query instances or one or multiple strings that gets send as global messages.

	Returns

	The results of the multicall.

	
prepare(message=None, raw=False)[source]

	Prepare a Chat Query by returning a Chat Query object.

	Parameters

	
	message – Messsage predefined or build later.

	raw – Don’t append prefixes or add any automatic message parts.

	Returns

	Query instance

	Return type

	pyplanet.contrib.chat.query.ChatQuery

	
prepare_raw(message=None)[source]

	Prepare raw message query without prefixes!

	Parameters

	message – Predefined message.

	Returns

	Query instance

	Return type

	pyplanet.contrib.chat.query.ChatQuery

 pyplanet.utils

pyplanet.utils

pyplanet.utils.gbxparser

	
exception pyplanet.utils.gbxparser.GbxException[source]

	Exception with parsing the Gbx file.

	
class pyplanet.utils.gbxparser.GbxParser(file=None, buffer=None)[source]

	Async GBX Map Information Parser.

Author: Toffe.

	
async seek(offset)[source]

	We need to override the second param to move from the current position.

	Parameters

	offset (int) – offset to move away.

pyplanet.utils.style

	
pyplanet.utils.style.STRIP_ALL = {'letters': 'wnoitsgz<>', 'part': '\\$[lh]\\[.+\\]|\\$[lh]|\\$[0-9a-f]{3}'}

	Strip all custom maniaplanet styles + formatting.

	
pyplanet.utils.style.STRIP_CAPITALS = {'letters': 't'}

	Strip capital style ($t).

	
pyplanet.utils.style.STRIP_COLORS = {'letters': 'g', 'part': '\\$[0-9a-f]{3}'}

	Strip colors from your input (including $g, color reset).

	
pyplanet.utils.style.STRIP_LINKS = {'part': '\\$[lh]\\[.+\\]|\\$[lh]'}

	Strip links ($h and $l).

	
pyplanet.utils.style.STRIP_SHADOWS = {'letters': 's'}

	Strip shadow style ($s).

	
pyplanet.utils.style.STRIP_SIZES = {'letters': 'wnoiz'}

	Strip all size and adjustments styles ($w $n $o $i $z).

	
pyplanet.utils.style.style_strip(text, *strip_methods, strip_styling_blocks=True, keep_reset=False, keep_color_reset=False)[source]

	Strip styles from the Maniaplanet universe.

Examples:

print("--- Strip: colours ---")
print(style_strip("ifffMax$06fSmurf$f00.$fffes$$l$09f.$fffm$08f$a5xnw$o", STRIP_COLORS))
print(style_strip("$l[some link]$i$FFFMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx$l", STRIP_COLORS))
print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx", STRIP_COLORS))
print("--- Strip: links ---")
print(style_strip("li$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x$l", STRIP_LINKS))
print(style_strip("ifffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x", STRIP_LINKS))
print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffes$$l$09f.$fffm$08fx$l", STRIP_LINKS))
print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx", STRIP_LINKS))
print("--- Strip: sizes ---")
print(style_strip("in$fffMax$06fSmurf$f00.$wofffe$$nsl$09f.$w$fffm$08f$a5$ox", STRIP_SIZES))
print("--- Strip: everything ---")
print(style_strip("hi$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x$h", STRIP_ALL))
print(style_strip("$l[some link]$i$fffMax$06fSmur$$f$f00.$fffesl$09f.$fffm$08fx$l"))
print(style_strip("$l[some link]$i$fffMax$06fSmunrff00.$fffesl$09f.$fffm$08fx"))
Other stuff.:
print(style_strip("$l[some link]$i$fffMax$06fSmunrff00.$fffesl$09f.$fffm$08fx", STRIP_CAPITALS, STRIP_SHADOWS))

.

	Parameters

	
	text (str) – The input string text.

	strip_methods – Methods for stripping, use one of the STRIP_* constants or leave undefined to strip everything.

	strip_styling_blocks (bool) – Strip all styling blocks ($> and $<)

	keep_reset (bool) – Keep full resets ($z).

	keep_color_reset (bool) – Keep color resets ($g).

	Returns

	Stripped style string.

	Return type

	str

pyplanet.utils.times

	
pyplanet.utils.times.format_time(time, hide_hours_when_zero=True, hide_milliseconds=False)[source]

	Format time from integer milliseconds to string format that could be displayed to the end-user.

	Parameters

	
	time (int) – Integer time in milliseconds.

	hide_hours_when_zero (bool) – Hide the hours when there are zero hours.

	hide_milliseconds (bool) – Hide the milliseconds.

	Returns

	String output

	Return type

	str

 Support & Contact

Support & Contact

If you have any problems with starting PyPlanet, please report it on GitHub: https://github.com/PyPlanet/PyPlanet

If you have any problems that are maybe not that PyPlanet related, please referer to the Maniaplanet Forum: https://forum.maniaplanet.com/

Demo Servers

There are several demo servers available. You need to search for servers on the following logins:

	toffestaging1

	toffestaging2

Who is behind PyPlanet

Organisation:

	Toffe: Project and organisation lead.

Core:

	Toffe: Lead developer of the PyPlanet project.

Apps:

	Toffe: Bundled Application developer.

	TheM: Bundled Application developer.

	Reaby: Bundled & External Application developer.

Testers:

	HaagseSmurf: Tester for the PyPlanet core and apps code.

External Contributors

	StupsKiesel: App Contributor.

	Moski: App Contributor.

Want to help us? Contact Toffe on Discord or Forum:
Toffe#8999 or Forum Profile [https://forum.maniaplanet.com/memberlist.php?mode=viewprofile&u=20394].

Donate

You can support PyPlanet and other projects of Toffe (such as PyPlanet and ManiaCDN) with the following donation options:
The money will go towards hosting and paying bills for ManiaCDN, hosting test-servers for PyPlanet and other projects. When
profit is made it will be saved for bills in the future.

[image: _images/patreon-donate-yellow.svg]
 [https://patreon.com/pyplanet][image: _images/paypal-donate-yellow.svg]
 [https://paypal.me/tomvlk]

 Privacy

Privacy

Error reports

We have an automated error reporting system in place that tells the developers or PyPlanet when there are instabilities in
the core code or in one of the contributed and bundled apps.

What are we catching and reporting

We will catch so called uncaught exceptions, these are mostly not handled by one of the functions inside of the code.
When it’s not handled, the whole function or call to that function is halt and stopped. When this happends, we send
an report with the full traceback (all the touched lines of code in order) with the data of the exception.

We also have some specific messages we forward towards the error reporting service. For this kind of messages it’s really
important we get to know them. For example a memory leak in one of the apps or contributed apps. Or a captured exception
but it’s not known or handled right.

What data are we sending with the report

Depending on the setting we send minimum of full data about your installation and server. By default you will contribute
with the full data option.

Full (level 2 or 3):

	Server dedicated login, paths to maps, scripts, modes, all kind of dedicated configuration.

	Variable data in local method, inside of the exception call.

	Exception with trace or error message including module and line.

	Share information (filtered to only the basic information, no user specific data!!) to app developers (must be level 3)

Minimum (level 1):

	Exception with basic trace or error message.

Where will the data be stored

All the data will be stored in an analyse and reporting tool that is fully self hosted by Toffe. We protect the installation
with HTTPS and don’t allow unauthorized or non-pyplanet team members to access the data.

What about sensitive information

We will replace any sensitive information that seems to be either a key, serial or password by asterisk. This is done in
the reporting process.

How to change the behaviour of reporting

You can add this line to your base.py file to change the behaviour.

Error reporting
See documentation for the options, (docs => privacy).
Options:
0 = Don't report any errors or messages.
1 = Report errors with only traces.
2 = Report errors with traces and server data.
3 = Report errors with traces and server data, provide data to contributed apps (only pyplanet team has access).
LOGGING_REPORTING = 3

Warning

We really like to improve the stability of PyPlanet, therefor we kindly ask you to keep the setting on, or at least
at level 2.

Analytics & Telemetry

For future improvements and look into the usage of PyPlanet and it’s apps we collect the following information:

	PyPlanet version

	Python version

	Server version

	Operating system

	Server login

	Server titlepack

	Active apps

	Total number of players

We do this by sending so called ping-updates every hour with up-to-date status about the server. By collecting this
we gain information on how to improve with targeting specific titles or apps for updates. And to improve the operating system
support if required.

You can turn this off by adding this line to your settings/base.py:

ANALYTICS = False

 Changelog

Changelog

0.9.6 + 0.9.7 + 0.9.8 + 0.9.9 (21 February 2021)

Core

	Improvement: Add support for UI properties in TM2020.

	Improvement: Add support for Echo callback.

	Improvement: Add support for several new TM2020 callbacks.

	Improvement: Increase the supported script modes version.

	Bugfix: Issue resolved for checking the mode_requirement in apps.

Apps

	Feature: Adding dynatime app! Add it in your apps.py to enable.

	Feature: Add limit for extending the timelimit, setting has been added to //settings.

	Feature: Mania-Exchange random maps function.

	Improvement: Adjust the API urls of Mania-Exchange.

	Improvement: Update UI support for controllers.

	Improvement: Current CPs improvements and enable for TM2020.

	Improvement: Don’t show delete icon when not having the right permissions (in map list and records list).

	Bugfix: Fix for TeamMode where the quad is fully colored.

	Bugfix: Fix for fun commands usage in wrong games and when muted.

	Bugfix: Fix retrieval of current players/spectators in Dedimania API update loop

	Bugfix: Fixing issues with retrieving dedimania records when switching modes.

	Bugfix: Resolve typos in several locations.

	Bugfix: Resolve issues with MX on MP.

	Bugfix: Resolve issues with dedimania on MP.

0.9.5 (28 October 2020)

Core

	Bugfix: Fixing issues with collecting checkpoint data on finish callback. Related to the TM2020 checkpoint comparison issue.

Apps

	Improvement: Improving the external link to the map page on MX/TMX in the upper right corner.

	Improvement: Move the sector times widget in TM2020 to the left of the time counter.

	Improvement: Change icon of the map info widget.

	Bugfix: Fixing the issue with the checkpoint comparison in TM2020. Also put in a failsafe to not show corrupted local records from the past.

	Bugfix: Fixing the issue with displaying the incorrect checkpoint counter the sector times widget.

	Bugfix: Fixing the issue with sending the permission error message of deleting a record to all players (now send it only to the player that clicked).

0.9.4 (16 October 2020)

Core

	Improvement: Add widget visibility toggle in player toolbar to promote F8.

	Bugfix: Adding local maps will refresh the list from now on.

	Bugfix: Fix the name of the teams script for TM2020, making //mode teams work now.

	Bugfix: Fixing the issue with not recording any scores in TM2020 resulting in the minimum finish before karma vote issue.

Apps

	Improvement: Ability to copy the player login from any player list.

	Bugfix: Fixing live rankings in Laps mode.

	Bugfix: Small exception resolved with adding duplicated map.

	Bugfix: Fix issue with Karma being Nan in the advanced list and fixing issues with loading the advanced list.

	Known issue: Fixing the issue with CP comparison widget in TM2020.

0.9.3 (10 September 2020)

Core

	Feature: Add guestlist support. //addguest, //removeguest and adding settings and commands to save it to disk.

	Improvement: Add mode shortcuts for TM2020, from now you can do //mode ta etc.

Apps

	Feature: Add support for sector times in TM2020.

	Feature: Add support for live rankings in TM2020.

	Improvement: Add support for //endround in TM2020.

	Bugfix: Fixing issue with map info from TMX.

	Bugfix: Fixing issue with the minimal finishes setting in the karma app.

	Bugfix: Fixing issue with inserting maps on adding from TMX.

	Bugfix: Fixing issue with NaN in advanced list.

0.9.2 (8 July 2020)

Apps

	Improvement: Add full support for TMX Trackmania Exchange.

	Bugfix: Fixing issues with the random messages in the ads app.

0.9.1 (6 July 2020)

Apps

	Feature: Claim admin rights by /claim [token]. Check the console for the token.

	Improvement: Adding semi-support for TMX Trackmania Exchange. More support coming later when the API becomes available.

	Bugfix: Fixing issues with adding maps for the new Trackmania (2020).

0.9.0 (1 July 2020)

Core

	Feature: Support for the new Trackmania.

	Bugfix: Fixing issue with parsing target player in spectator status in the player change callback.

Apps

	Bugfix: CP Difference bugfix for spectating users.

0.8.2 (23 May 2020)

Core

	Bugfix: Fixing issue with the non-updating widgets when performance mode is activated for several apps.

0.8.1 (18 May 2020)

Apps

	Bugfix: Fixing issue with dedimania and retrying too much (revert new retry mechanism).

	Bugfix: Temporary fix: Revert the live-rankings as it shows incorrect data during warm-ups.

	Bugfix: Move the donation widget to the left in Shootmania.

0.8.0 (13 May 2020)

Core

	Feature: Activated Apps lifecycle, enabling and disabling apps on the fly depending on it’s requirements.

	Feature: Add player toolbox/toolbar. You can disable this with a setting in //settings in-game.

	Feature: Add CP Comparison to find the best checkpoints by using the best checkpoint times of all local records (/cpcomparison).

	Improvement: Dropping Python 3.5 support!

	Improvement: Add //helpall and /helpall for a detailed list of commands!

	Improvement: Only commands that you have permission for will be listed in //help

	Improvement: Remove the deprecated instance.signal_manager.

	Improvement: Add deprecated warning for get_player_data method.

	Improvement: Improve error reporting when an app failed loading.

	Improvement: Check for platform versions, check if Python is compatible with the PyPlanet installation.

	Improvement: Add support for list/set typed settings.

	Improvement: Add a z-index to different widgets so it will be correctly visible on the podium stage.

	Improvement: Improve list visibility on Shootmania based games.

	Improvement: Add new version of //call with Graphical Interfaces.

	Bugfix: Fixing issue with an empty command input (/ without any text) resulting in executing the last registered command.

	Bugfix: Fixing issue with converting from UAseco when the filename is empty (from a previous XAseco installation).

	Bugfix: Crash with very long map names. Now truncating map names to the maximum allowed length in the database.

Apps

	New App: Added Fun Commands app with /gg, /nt, /n1, /ragequit, etc. Add pyplanet.apps.contrib.funcmd to your apps config.

	Feature: Implemented Emoji Chat toolbar into the fun commands app. Disable with //settings.

	Feature: Add donation widget to the transactions app. On by default, only showing at podium. Change to always with //settings.

	Feature: Add random messages to the Ads app. Add messages and change the interval with //settings.

	Feature: Add gear indicator to the sector_times app, only works in Stadium based games. Enabled by default, disable with //settings.

	Feature: Add points retrieved to the live rankings widget, replacing the build-in finish widget, only works in rounds-based modes.

	Improvement: Make sure all contrib apps don’t use get_player_data anymore.

	Improvement: Decrease size of the AD buttons (Discord and PayPal buttons).

	Improvement: Move the checkpoint difference widgets a bit higher so it doesn’t block the view so much (sector_times app).

	Improvement: Improve the retry mechanism of Dedimania during connection issues.

	Improvement: Make sure that updated maps with MX will reappear in the map folders.

	Improvement: Switch the dedimania widget with liveranking and currentcps widgets if dedimania widget is not visible.

	Bugfix: Using the map name from MX if the Gbx map name is not provided by MX.

	Bugfix: Fixing issue with MX update check on Shootmania.

	Bugfix: Show a warning when a map might fail with dedimania due to the size of the embedded blocks.

	Bugfix: Ignore invalid checkpoint times in the best cps widget.

0.7.4 (04 March 2020)

Apps

	Bugfix: Fixing issue with the MX update dialog and it’s internal logic.

0.7.3 (02 March 2020)

Core

	Bugfix: Make sure the libraries also work for older Python versions (3.5.x).

0.7.2 (02 March 2020)

Core

	Improvement: Python 3.8.x support!

	Improvement: Update libraries used.

	Improvement: Better error handling for loading configuration/settings files.

	Bugfix: Make sure the MX-id is properly extracted and inserted into the database.

Apps

	Feature: Add MX map update window. Access it with //mx status. You can update your maps when there are any available updates.

	Improvement: Add dedimania link to the dedimania page in the chat message and the record list.

	Improvement: Add alias for the command /mapfolders: /mf.

	Improvement: Add alias for the MX search: //mx list and //mxpack list.

	Improvement: Improve the error messages from a failing Dedimania service.

	Bugfix: Make sure the queue app is inactive when the server is password protected.

	Bugfix: Make sure admins can’t kick/ban/blacklist admins at the same level or higher.

0.7.1 (23 October 2019)

Core

	Bugfix: External map changes are detected wrongly resulting in performance impact in map change on large servers. This issue has been resolved.

0.7.0 (05 October 2019)

Core

	Breaking: Removed the deprecated app.mapinfo.

	Feature: Keeping track of the MX-id in the database (Database Migration is executed at first startup, no action required for this).

	Feature: Keep track of the total donations and total playtime of the players. Show it with /topactive and /topdons.

	Improvement: Upgrade several external libraries.

	Improvement: Support for the latest XMLRPC Scripted version and latest dedicated version. (Min. dedicated is now set to 2018-02-09_16_00).

	Improvement: Improve the cleanup and initial reset of the UI Properties.

	Improvement: Changed the key to show/hide some widgets from F7 to F8.

	Improvement: Added one missing scripted event handler for Shootmania.

	Improvement: Update the maplist when a change is detected by the server (useful when adding/removing maps in another tool).

	Security: Update some libraries to fix some security issues (none of which were critical).

	Bugfix: When a map is removed it previously didn’t always got removed from the /list view, this has been fixed.

Apps

	New App: Integrated the Current CPS App from Teemann into the bundled apps (will get a refactor later on).

	Feature: Add MX Info command /mx info.

	Feature: Add command to show/hide the admin toolbar //toolbar.

	Feature: Add a setting to disable/enable juking maps by players.

	Feature: Add voting widget (displaying buttons when a vote is ongoing).

	Feature: Add support for MX MapPacks. //mxpack search and //mxpack add [id].

	Feature: Add a setting to decide how many days a map should be classified as ‘new’ and be included in the mapfolder ‘new maps’.

	Feature: Added a warn button to the manage players view (//players).

	Feature: Add a timeout to the chatvotes, the timeout is an adjustable setting. (default 120 seconds).

	Improvement: The dedimania welcome message also contains the limits of the player and server according to their donation status. (This is a setting and can be turned on, off by default!)

	Improvement: Small improvements in the map karma app related to usability and chat feedback.

0.6.4 (17 February 2019)

Core

	Improvement: Upgrade several external libraries.

	Improvement: Fix English grammar mistake.

	Security: Make sure that the Yaml files are loaded with the safe method.

	Bugfix: Fixing the integer overflow when extending the time limit too much (for TA modes).

	Bugfix: Make sure to await the coroutine in the royal points callback.

Apps

	Improvement: Make sure the user can use the localcps and dedicps when not having an record (just to view the checkpoint times).

0.6.3 (17 November 2018)

Core

	Bugfix: Fixing loading of settings on some setups.

0.6.2 (17 November 2018)

Core

	Security: Upgraded library to solve security issues (requests library).

	Bugfix: Fixing issues with the command line interface and showing settings error, preventing executing commands outside project

Apps

	Bugfix: Fix issue with clearing the jukebox and locking up the whole jukebox app.

0.6.1 (7 October 2018)

Core

	Improvement: Added compatibility with Python 3.7.x.

	Improvement: Upgraded external libraries.

	Improvement: Giant performance improvement when indexing maps, karma and local-records data after writing maplist and booting for large servers.

	Bugfix: Fixing issue with invalid JSON files (settings). Will show a correct error message.

	Bugfix: Fixing readmaplist.

Apps

	Bugfix: Fix issue in Local Records. Trying to initiate widget before the widget is created in the context.

	Bugfix: Fixing incorrect differences on the live cp times (live rankings) in laps mode.

	Bugfix: Fixing issues with Dedimania in Laps mode.

	Bugfix: Fixing issues with cleaning the Dedimania replays.

	Bugfix: Fixing issue with Dedimania and first driven record (global while it should be only to the person).

	Bugfix: Fixing issue with recording of normal and expanded karma scores in karma app.

0.6.0 (5 May 2018)

Core

	Breaking: Removed the deprecated app.ui.

	Feature: Add in-game and command line upgrade commands (//upgrade and ./manage.py upgrade) (CAUTION: Can be unstable!).

	Improvement: Slightly improved the performance when booting PyPlanet on large servers (indexing of local and karma)

	Improvement: Increased the retry count for connecting to a dedicated server from 5 to 10 retries.

	Improvement: Added bumpversion to project (technical and only for development).

	Improvement: Unpack the flags of the PlayerInfoChange callback and expand the flow variables (technical).

	Improvement: Updated external libraries.

	Improvement: Extract the zone information for players (technical).

	Improvement: Add nation to join and leave messages.

	Improvement: Activated the shutdown handlers to safely exit PyPlanet. The stop callbacks are now called at shutdown of PyPlanet.

	Improvement: Show pre-release as update when running on a pre-release version. (We now release pre-releases for public testing).

	Bugfix: Fix issue when trying to //reboot on Windows.

Apps

	
	NEW: Add Music Server App: Queue music on your server. Add pyplanet.apps.contrib.music_server to your apps.py.
	More information: http://www.pypla.net/en/latest/apps/contrib/music_server.html

	
	NEW: Add Advertisement App: Show Discord and PayPal logos in-game. Add pyplanet.apps.contrib.ads to your apps.py.
	More information: http://www.pypla.net/en/latest/apps/contrib/ads.html

	
	NEW: Add Queue App: Add a queue for your spectators to fairly join on busy servers. Add pyplanet.apps.contrib.queue to your apps.py.
	More information: http://www.pypla.net/en/latest/apps/contrib/queue.html

	Feature: Add settings to change vote ratio for the chat voting app.

	Feature: Add advanced voting (++, +, +-, -, –).

	Feature: Add MX Karma integration. You can configure this in-game with //settings and retrieve a key from: https://karma.mania-exchange.com/

	Feature: Add Admin Toolbar to manage your server a bit faster. (you can disable this in //settings)

	Feature: Add new vote to extend the time limit on TA modes (better than /replay or /restart, try it!).

	Feature: Add admin command to extend the time limit on TA modes temporary (//extend [time to extend with] or empty for double the current limit).

	Feature: Add dedimania checkpoint comparison (/dedicps and /dedicps [record number]) to compare your checkpoint times with the record given (or first when none given).

	Feature: Add local record checkpoint comparison (/localcps and /localcps [record number]) to compare your checkpoint times with the record given (or first when none given).

	Feature: Add F7 to hide most of the widgets (concentration mode).

	Feature: Add /topsums statistics to see the top local record players.

	Feature: Add buttons to delete local records by an admin.

	Feature: Add checkpoint difference in the middle of the screen when passing checkpoints (in the sector_times app).

	Feature: Cleanup the dedimania ghost files after reading and sending to dedimania API.

	Feature: Add advanced /list for searching and sorting with your personal local record, the time difference and karma. (can take long on big servers).

	Improvement: Add caching to the /list view per player and per view.

	Bugfix: Fix issue with incorrect link in the dedimania settings entry.

	Bugfix: Fix the type inconsistency of the dedimania API and driven records

	Bugfix: Fix when trying to vote after restarting the map in the podium sequence.

	Bugfix: Fix the retry logic of Dedimania when losing connection.

0.5.4

Core

	Improvement: Add unit testing on Windows platform (Technically, using AppVeyor).

	Bugfix: Make sure script names with folders are cleaned and stripped from folder names in most cases.

Apps

	Feature: Add button and window to change a folder’s name.

	Improvement: Juke maps that are just added the correct order.

	Improvement: Allow the best CP widget for all modes.

	Improvement: Add blacklist write and read commands, now writes when adding player to blacklist and reads when PyPlanet starts.

	Bugfix: Fix the scoreprogression command and window.

	Bugfix: Fix issue when map list was saved to disk and all auto-folders where empty afterwards.

	Bugfix: Fix issue where the dedimania records where not reloaded when game mode changed and map has been restarted.

	Bugfix: Fix message when 2 players rapidly vote and the vote has passed.

0.5.3

Apps

	Bugfix: Fixing issue with spamming chat vote reminder.

	Bugfix: Fixing admin pass message when forcing pass a vote.

0.5.2

Core

	Improvement: Disable writing log files by default from 0.5.2.

	Improvement: Move logo and clock down so it doesn’t interfere with the spectator icon.

	Bugfix: Logging on windows should be fixed now.

	Bugfix: Issue with multiple users editting modesettings or PyPlanet settings at the same time.

Apps

	Feature: Add zero karma folder (auto-folder)

	Feature: Added settings to enable or disable specific chat votes.

	Feature: Add //cancelcall (//cancelcallvote) for cancelling a call vote as an admin.

	Feature: Add //pass to pass a chat vote with your admin powers.

	Feature: Add button to add current map to folder on the folder list.

	Improvement: Change chat color of the chat vote lines.

	Improvement: Disable callvotes when chatvotes is turned on (made setting for this as well).

	Bugfix: Only show the folders of the user when adding maps to a folder.

	Bugfix: Fix error when player has not been online and users trying to get the last on date of the player.

	Bugfix: Remove unique index on the folder name so folders can have the same name over all. (auto-migration made).

	Bugfix: Fix bug that prevented added maps to be auto-juked.

0.5.1

Core

	Bugfix: Fix for Windows users and import error.

0.5.0

Core

	Breaking: App context aware signal manager.

This is a deprecation for the property signal_manager of the instance. This means that self.instance.signal_manager
needs to be replaced by self.context.signals to work with the life cycle changes in 0.8.0.
More info: https://github.com/PyPlanet/PyPlanet/issues/392

The old way will break your app from version 0.8.0

	Feature: Add multiple configuration backends. You can now use JSON or YAML as configuration as well. This is in a beta
stage and can still change in upcoming versions. See the documentation for usage.

	Feature: Add logging to file option for starting PyPlanet. You can set this up inside of your settings base.py.
More information can be found in the documentation for configuring PyPlanet.

	Feature: Add detach switch to the PyPlanet starter so it can fork itself to the background and write a PID file.
More information can be found in the documentation for starting PyPlanet.

	Feature: Add player attributes that can be set by apps for caching or maintaining user settings or data during the session. (Technical)

	Feature: Add migration script for eXpansion database. Look at the manual on http://www.pypla.net/en/stable/convert/index.html for more information.

	Improvement: Retry 5 times when connecting to the dedicated server, making it possible to start both at the same time.

	Improvement: Update library versions.

	Improvement: Add minimum required version of the dedicated server to prevent starting PyPlanet for non-supported dedicated versions.

	Improvement: Only check for stable new versions. Now check for releases instead of tags on Github.

	Improvement: Let the list view skip 10 pages buttons skip to end or begin when less than 10 pages difference. (Thanks @froznsm)

	Improvement: Add online players login list in the player_manager. (Technical)

	Bugfix: Fixing issue with the release checker.

	Bugfix: Fixing the link to the upgrade documentation page (Thanks to @thefifthisa).

	Bugfix: Only handle player info change event when this player is still on the server to prevent errors.

	Bugfix: Handle exception when the server initiated a callvote (Thanks to @teemann).

	Bugfix: Correctly handle None column values when searching and/or sorting generic lists.

	Bugfix: Correctly handle non-string column values when searching and/or sorting generic lists.

	Bugfix: Refresh and fixed the player and spectator counters.

Apps

	NEW: Best CPS Widget for Trackmania, shows the best times per checkpoint above the screen.
Add the new app to your apps.py: ‘pyplanet.apps.contrib.best_cps’. More info on the documentation pages of the app. (Big thanks to @froznsm)

	NEW: Clock Widget, shows the local time of the players computer on the PyPlanet logo.
Add the new app to your apps.py: ‘pyplanet.apps.contrib.clock’. More info on the documentation pages of the app. (Big thanks to @froznsm)

	NEW: Chat-based Vote App, want to have votes in the chat instead of the callvotes? Enable this app now!
Add the new app to your apps.py: ‘pyplanet.apps.contrib.voting’. More info on the documentation pages of the app.

	Feature: Add folders to the /list interface. There are two types of folders, automatic folders based on facts and manual per player/admin folders.

	Feature: Add folders for karma related information when karma app is enabled.

	Feature: Add folder for newest maps (added within 14 days).

	Feature: Add spectator status in the /players list.

	Feature: Add /scoreprogression command to see your current score progressions statistics on the current track.

	Feature: Add team switch commands (//forceteam and //switchteam) to the admin app.

	Feature: Add warning command (//warn) and alert to the admin app to warn players.

	Feature: Add the MX link of the current map to the logo left from the map name.

	Feature: Add setting to directly juke after adding map from MX or local (defaults to on).

	Feature: Add //blacklist and //unblacklist to the admin app.

	Improvement: Applied context aware signal manager everywhere.

	Improvement: Moving logic to view in dedimania app.

	Improvement: Adding setting to juke map after //add (mx and local) the map. Enabled by default!

	Improvement: Adding help text to jukebox app command.

	Improvement: Remove workaround for the fixed dedicated issue caused problems with the dedimania app.

	Improvement: Only show login in /list for now as it was causing inconsistency.

	Improvement: Check if the player is online before taking admin actions like kicking the player.

	Improvement: Refactor logic of viewing dedimania records to the desired view class. (Technical)

	Improvement: Further investigate dedimania problems for some specific players. Internal cause is known, exact reason not yet, we will further investigate this issue.

	Bugfix: Make sure to skip jukeboxed map when it’s deleted from the server.

	Bugfix: Fix the double live rankings entry when changing nickname.

	Bugfix: Check if we have data to compare before calculating CP difference in the live rankings widget.

	Bugfix: Local record widget display fix when player joined during a very specific time that causes it to not display to the user.

0.4.5

Core

	Feature: Add ManiaControl convert script. See documentation on converting from old controller for instructions.

	Improved: Add documentation on how to convert to the right database collation.

Apps

	Bugfix: Fixing issue in the Dymanic Pointlimit app that results in 3 settings having the same key name.

0.4.4

	Feature: Add UAseco convert script. See documentation on converting from old controller for instructions.

	Improved: Updated libraries and dependencies.

	Bugfix: Catch error when server initiated callvote, thanks to @teemann.

	Bugfix: Fix the release/update checker.

0.4.3

Apps

	Bugfix: Fix issue with switching to custom script (lower case not found), specially teams mode.

0.4.2

Core

	Improvement: Bump XML-RPC Script API to version 2.2.0.

	Improvement: Show the Round Score build-in ui (nadeo widget) and move it a bit.

	Improvement: Move the build-in warmup ui (nadeo widget) a bit.

Apps

	Feature: Add //shuffle and //readmaplist. Both are unsure to work.

	Improvement: Further investigate and report issues related to Dedimania.

	Bugfix: Fixing negative count issue on the info widgets.

	Bugfix: Remove faulty and debug line from dedimania api catch block.

	Bugfix: Properly handle the dedimania response when player is not correct.

	Bugfix: Fixing issues with boolean values and the //modesettings GUI.

0.4.1

Core

	Improvement: Add command ignore and /version improvements.

	Improvement: Disable the live infos in the left upper corner (player join/leave, 1st finish).

	Bugfix: Issue with database collate and utf8mb4, nickname parsing issue has been solved.

	Bugfix: Don’t auto reload and use different environments for the template engine. Should improve performance very much.

	Bugfix: Ignore unknown login at the chat and UI managers.

	Bugfix: Ignore key interrupt exception trace when stopping PyPlanet while it has got a reboot in the mean time.

	Bugfix: Hide the ALT menu in shootmania, just as it should do since before 0.4.0.

	Bugfix: Fixing issue with checking for updates could result in a exception trace in the console for some installations with older setuptools.

	Bugfix: Fixing an issue that results in fetching data for widget several times while it’s not needed (thinking it’s per player data when it isn’t). (Thanks to Chris92)

Apps

	Improvement: Make it able to drive dedimania records on short maps made by Nadeo.

	Improvement: Make the improvement time blue like Nadeo also does in the sector times widget.

	Improvement: Always show nickname of the map author and make it switchable by clicking on it.

	Bugfix: Don’t set the time of the spectator as your best time in the sector times widget.

	Bugfix: Problems that could lead to dedimania not being init currently on the map if the map was replayed.

	Bugfix: Hide dedimania if map is not supported.

	Bugfix: Fix the offset issue for the live rankings widget (in TA mode).

	Bugfix: Fix the incorrect number of spec/player count on the top left info widget.

0.4.0

Core

	Breaking: Refactored the TemplateView to make it able to use player data way more efficient.

This is a deprecation for the method get_player_data. From now on, use the get_all_player_data or the better get_per_player_data.
More info: pyplanet.views.

The old method will not be called from 0.7.0

	Feature: UI Overhaul is done! We replaced the whole GUI for a nicer, simple and modern one! With large inspiration of LongLife’s posted image (https://github.com/PyPlanet/PyPlanet/issues/223).

	Feature: UI Update queue, Don’t make the dedicated hot by sending UI updates in realtime, but queue up and sent every 0,25 seconds. (Performance)

	Improvement: Removing the fix for symbols in nicknames/chat (fix for the maniaplanet dedicated/client issue earlier).

	Improvement: Add analytics.

	Improvement: Don’t report several exceptions to Sentry.

	Improvement: Remove SQlite references in code and project skeleton.

	Improvement: Give error message when loaded script is using old style scripted callbacks.

	Improvement: Dynamic future timeouts for script/gbx queries.

	Improvement: Add ManiaScript libs includes in core. Will be expanded, open pull requests if needed!

	Improvement: Adding two new signals for players when entering spec/player slot.

	Bugfix: Adding several investigation points to send more data about problems that occur for some users.

Apps

	Breaking: Refactor the MapInfo app to Info app. Adding new features: Server and general info on top left corner.

This requires a config change:
Change pyplanet.apps.contrib.mapinfo into pyplanet.apps.contrib.info and you are done!

The old app will be removed in 0.7.0

	Feature: New App: Shootmania Royal Dynamic Point Limit is here! Add it with pyplanet.apps.contrib.dynamic_points.

	Feature: New App: Trackmania Checkpoint/Sector time widget is here! Add it with pyplanet.apps.contrib.sector_times.

	Feature: Change modesettings directly from the GUI (//modesettings).

	Improvement: Apply the new UI Overhaul to all apps.

	Improvement: Add message when dedimania records are sent.

	Improvement: Improve the dedimania error handling even better.

	Improvement: Notice when map is not suited for dedimania records.

	Improvement: Several performance improvements on the dedimania and localrecords apps.

	Improvement: Add dynamic actions to map list, such as deletion of maps.

	Improvement: Modesettings list is ordered by name by default now.

	Bugfix: Adding several investigation points to send more data about problems that occur for some users.

	Bugfix: Trying to sent dedi records when dedimania isn’t initialized bug is solved.

	Bugfix: Prevent double message of dedimania record when switching game modes.

	Bugfix: Fixing double local records (or investigate more if it still occurs).

0.3.3

Core

	Bugfix: Ignore errors with unknown login for ui updates. (means the player left).

Apps

	Bugfix: Fixing issues with dedimania and unsupported maps.

	Bugfix: Fixing issues with dedimania and replays.

	Bugfix: Fixing issues with local records widget showing the wrong offset.

	Bugfix: Fixing issues with local records and double records.

	Improvement: Some not visible improvements to the local record widget logic.

0.3.2

Core

	Bugfix: Not properly sending and handling mode changes.

	Bugfix: Several errors in handling the callbacks in shootmania

Apps

	Bugfix: Fixing issue with removing or erasing maps.

	Improvement: Dedimania now also works in cup mode.

	Feature: Add //replay command for admins, make it able to juke the current map for non-players (ops and admins)

0.3.1

Core

	Improvement: Multiple namespaces per command + improve help.

	Improvement: Hide the alt menu in shootmania when having a window in the middle.

	Improvement: Add method to retrieve map by index.

	Bugfix: Save boolean in the //settings

	Bugfix: Fixing issue with writing the map list.

	Bugfix: Handling of fetching player in a callback for shootmania.

	Bugfix: Several fixes for shootmania modes.

Apps

	Improvement: Make dedimania record message shorter.

	Bugfix: Double prefix in leave messages.

	Bugfix: Dedimania nickname fetching gave error. Sometimes the widget didn’t work properly.

	Bugfix: Improve error handling in Dedimania.

	Bugfix: Fixing issue with write map list (admin part of it).

	Bugfix: Don’t display the time of the author when in shootmania

0.3.0

Core

	Feature: Refactor the app config class so you can define apps in __init__.py and use shorter configuration, (backward compatible for current contrib apps).

	Feature: Signals runs with gather mode (parallel) now. Makes this way more faster!

	Feature: Add save hook to setting object.

	Feature: Chat contrib component, for shorter syntax at sending and preparing chat messages.

	Feature: Refactor the GBX component, for shorter syntax at sending and preparing Gbx Methods.

	Feature: Make it able to change the UI Properties from the games

	Feature: Add ‘suggestion or bug’ report button.

	Improvement: Unknown command message.

	Improvement: Makes it faster to display local records.

	Improvement: Refactor the local record code.

Apps

	Feature: Add Live Rankings app (beta). Add it to your apps.py!

	Feature: Add chat announce limit in local and dedi records.

	Improvement: Autosave matchsettings on insertion of map.

	Improvement: Hide dedimania widget on downtime.

	Improvement: Better error handling in dedimania app.

	Bugfix: Fixing issue with displaying WhoKarma list.

	Bugfix: Fixing path issues in MX app.

0.2.0

Core

	Feature: Improved performance with the all new Performance Mode. This will improve performance for a player threshold that is freely configurable.

	Feature: Technical: Add option to strip styles/colors from searchable column in listviews.

	Feature: Technical: Add shortcut to get an app setting from global setting manager.

	Improvement: Improve log color for readability.

	Bugfix: Fixing issue with integer or other numeric values and the value 0 in the //settings values.

	Bugfix: Replace invalid UTF-8 from the dedicated response to hotfix (dirty fix) the bug in client with dedicated communication.

Apps

	Feature: New app: Transactions: Features donations and payments to players as the actual planets stats. Activate the app now in your apps.py!!

	Feature: Map info shows nickname of author if the author nickname is known.

	Feature: /list [search] directly searching in map list.

	Feature: Implement //modesettings to show and change settings of the current mode script.

	Feature: Restrict karma voting to count after the player finishes the map for X times (optional).

	Feature: Apply the performance mode improvements to the local and dedimania records widgets.

	Feature: Add command to restart PyPlanet pool process. //reboot

	Improvement: Changed dedimania record text chat color.

	Improvement: Changed welcome player nickname default color (white).

	Improvement: Reduced length of record chat messages.

	Improvement: Add player level name to the join/leave messages.

	Bugfix: Jukebox current map gives errors and exceptions.

	Bugfix: Ignore color and style codes inside /list searching.

	Bugfix: Some small improvements on widgets (black window behind local/dedi removed and more transparent)

0.1.5

Core

	Bugfix: Fixing several issues related to the connection and parsing of the payload.

	Bugfix: Fixing issue with the BeginMatch callback.

	Bugfix: Change issues related to the utf8mb4 unicode collate (max index lengths).

Apps

	Bugfix: Fixing several issues with the dedimania app.

	Bugfix: Fixing issue with local and dedimania records being saved double (2 records for 1 player). (#157).

	Bugfix: Fixing several exception handling in dedimania app.

0.1.4

Core

	Bugfix: Undo locking, causing freeze.

0.1.3

Apps

	Bugfix: Fixing issue in dedimania causing crash.

0.1.2

Core

	Bugfix: Filter out XML parse error of Dedicated Server (#121).

	Bugfix: Give copy of connected players instead of a reference to prevent change of list when looping (#117).

	Bugfix: Fixing issue when player rapidly connects and disconnects, giving error (#126 & #116).

Apps

	Bugfix Karma: Fixing whokarma list not displaying due to error (#122 & #118).

	Bugfix Dedimania: Reconnection issues (#130).

	Improvement Local Records: Improve performance on sending information (chat message) on large servers. (#139).

	Improvement Dedimania Records: Improve performance on sending information (chat message) on large servers. (#139).

	Improvement Dedimania Records: Improve the error reporting and implement shorter timeout + retry procedure (#139).

0.1.1

Core

	Fixing issue with creating migrations folder when no permission.

0.1.0

Core

	Add new fields to the game state class.

	Refresh the game infos every minute.

Contrib Apps

	NEW: Dedimania App: Adding dedimania integration and widget.

0.0.3

Contrib Apps

	Bugfix Local Records: Widget showing wrong offset of records. (Not showing own record if just in the first part of >5 recs) (#107).

0.0.2

Contrib Apps

	Bugfix Local Records: Widget not updating when map changed. Login not found exception. (#106).

0.0.1

Core

	First implementation of the core.

	First implementation of the CLI tool.

Contrib Apps

Admin pyplanet.apps.contrib.admin

	Feature: Basic map functions: skip / restart / add local / remove / erase / writemaplist

	Feature: Basic player functions: ignore / kick / ban / blacklist

	Feature: Basic server functions: set passwords (play / spectator)

Map list + jukebox pyplanet.apps.contrib.jukebox

	Feature: Display maplist with maps currently on the server

	Feature: Basic jukebox functions: list / drop / add / clear (admin-only)

Map karma pyplanet.apps.contrib.karma

	Feature: Basic map karma (++ / –)

	Feature: Display who voted what (whokarma)

Local records pyplanet.apps.contrib.local_records

	Feature: Saving local records

	Feature: Display current first/personal record on map begin (in chat)

	Feature: Display list of records

Playerlist pyplanet.apps.contrib.players

	Feature: Add join/leave messages.

MX pyplanet.apps.contrib.mx

	Feature: Add MX maps (//add mx [id(s]).

	Feature: Implement MX API Client.

 Todo (docs)

Todo (docs)

Todo

Write introduction + examples.

original entry

Todo

Write introduction.

original entry

Todo

Write introduction.

original entry

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyplanet	

 	
 	
 pyplanet.apps	

 	
 	
 pyplanet.apps.core.maniaplanet.callbacks.flow	

 	
 	
 pyplanet.apps.core.maniaplanet.callbacks.map	

 	
 	
 pyplanet.apps.core.maniaplanet.callbacks.other	

 	
 	
 pyplanet.apps.core.maniaplanet.callbacks.player	

 	
 	
 pyplanet.apps.core.maniaplanet.callbacks.ui	

 	
 	
 pyplanet.apps.core.shootmania.callbacks.base	

 	
 	
 pyplanet.apps.core.shootmania.callbacks.elite	

 	
 	
 pyplanet.apps.core.shootmania.callbacks.joust	

 	
 	
 pyplanet.apps.core.shootmania.callbacks.royal	

 	
 	
 pyplanet.apps.core.trackmania.callbacks	

 	
 	
 pyplanet.contrib.chat	

 	
 	
 pyplanet.contrib.command	

 	
 	
 pyplanet.contrib.command.exceptions	

 	
 	
 pyplanet.contrib.converter	

 	
 	
 pyplanet.contrib.converter.base	

 	
 	
 pyplanet.contrib.converter.uaseco	

 	
 	
 pyplanet.contrib.converter.xaseco2	

 	
 	
 pyplanet.contrib.map	

 	
 	
 pyplanet.contrib.map.exceptions	

 	
 	
 pyplanet.contrib.mode	

 	
 	
 pyplanet.contrib.mode.signals	

 	
 	
 pyplanet.contrib.permission	

 	
 	
 pyplanet.contrib.permission.exceptions	

 	
 	
 pyplanet.contrib.player	

 	
 	
 pyplanet.contrib.player.exceptions	

 	
 	
 pyplanet.contrib.setting	

 	
 	
 pyplanet.contrib.setting.exceptions	

 	
 	
 pyplanet.contrib.setting.manager	

 	
 	
 pyplanet.core.events.callback	

 	
 	
 pyplanet.core.events.dispatcher	

 	
 	
 pyplanet.core.events.manager	

 	
 	
 pyplanet.core.exceptions	

 	
 	
 pyplanet.core.instance	

 	
 	
 pyplanet.core.storage	

 	
 	
 pyplanet.core.storage.drivers	

 	
 	
 pyplanet.core.storage.drivers.asyncssh	

 	
 	
 pyplanet.core.storage.drivers.local	

 	
 	
 pyplanet.core.storage.exceptions	

 	
 	
 pyplanet.core.storage.storage	

 	
 	
 pyplanet.core.ui	

 	
 	
 pyplanet.core.ui.components	

 	
 	
 pyplanet.core.ui.exceptions	

 	
 	
 pyplanet.core.ui.filters	

 	
 	
 pyplanet.core.ui.loader	

 	
 	
 pyplanet.core.ui.template	

 	
 	
 pyplanet.core.ui.ui_properties	

 	
 	
 pyplanet.god.pool	

 	
 	
 pyplanet.god.process	

 	
 	
 pyplanet.utils.gbxparser	

 	
 	
 pyplanet.utils.style	

 	
 	
 pyplanet.utils.times	

 	
 	
 pyplanet.views.base	

 	
 	
 pyplanet.views.generics.alert	

 	
 	
 pyplanet.views.generics.list	

 	
 	
 pyplanet.views.template	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__init__() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.Setting method)

 	(pyplanet.views.generics.alert.AlertView method)

 	(pyplanet.views.generics.alert.PromptView method)

 	(pyplanet.views.generics.list.ListView method)

 	(pyplanet.views.generics.list.ManualListView method)

 	
 	__str__() (pyplanet.contrib.setting.Setting method)

 	__weakref__ (pyplanet.contrib.setting.Setting attribute)

 	_AppContext (class in pyplanet.apps.config)

 	_Game (class in pyplanet.core.game)

 	_SignalManager (class in pyplanet.core.events.manager)

A

 	
 	action_custom_event (in module pyplanet.apps.core.shootmania.callbacks.base)

 	action_event (in module pyplanet.apps.core.shootmania.callbacks.base)

 	add_map() (pyplanet.contrib.map.MapManager method)

 	add_param() (pyplanet.contrib.command.Command method)

 	(pyplanet.contrib.command.ParameterParser method)

 	AlertView (class in pyplanet.views.generics.alert)

 	app_dependencies (pyplanet.apps.AppConfig attribute)

 	
 	AppConfig (class in pyplanet.apps)

 	AppRegistryNotReady

 	Apps (class in pyplanet.apps)

 	AppSettingManager (class in pyplanet.contrib.setting.manager)

 	AppUIManager (class in pyplanet.core.ui)

 	ask_confirmation() (in module pyplanet.views.generics.alert)

 	ask_input() (in module pyplanet.views.generics.alert)

B

 	
 	BaseConverter (class in pyplanet.contrib.converter.base)

 	
 	bill_updated (in module pyplanet.apps.core.maniaplanet.callbacks.other)

C

 	
 	Callback (class in pyplanet.core.events.callback)

 	channel_progression_end (in module pyplanet.apps.core.maniaplanet.callbacks.other)

 	channel_progression_start (in module pyplanet.apps.core.maniaplanet.callbacks.other)

 	ChatManager (class in pyplanet.contrib.chat)

 	check() (pyplanet.apps.Apps method)

 	clear() (pyplanet.contrib.setting.Setting method)

 	close() (pyplanet.views.generics.alert.AlertView method)

 	(pyplanet.views.generics.list.ListView method)

 	Command (class in pyplanet.contrib.command)

 	
 	CommandManager (class in pyplanet.contrib.command)

 	connect_sftp() (pyplanet.core.storage.drivers.asyncssh.SFTPDriver method)

 	Controller (in module pyplanet.core.instance)

 	count_all() (pyplanet.contrib.player.PlayerManager property)

 	count_players() (pyplanet.contrib.player.PlayerManager property)

 	count_spectators() (pyplanet.contrib.player.PlayerManager property)

 	create_app_manager() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager method)

 	(pyplanet.core.events.manager._SignalManager method)

 	current_map() (pyplanet.contrib.map.MapManager property)

D

 	
 	dedicated_api_version (pyplanet.core.game._Game attribute)

 	dedicated_build (pyplanet.core.game._Game attribute)

 	dedicated_title (pyplanet.core.game._Game attribute)

 	dedicated_version (pyplanet.core.game._Game attribute)

 	destroy() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.template.TemplateView method)

 	destroy_sync() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.template.TemplateView method)

 	
 	did_die() (pyplanet.god.process.InstanceProcess property)

 	discover() (pyplanet.apps.Apps method)

 	display() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.generics.list.ListView method)

 	(pyplanet.views.template.TemplateView method)

 	driver() (pyplanet.core.storage.storage.Storage property)

 	DynamicManiaLink (class in pyplanet.core.ui.components)

E

 	
 	EnvironmentPool (class in pyplanet.god.pool)

 	errors() (pyplanet.contrib.command.ParameterParser property)

 	execute() (pyplanet.contrib.chat.ChatManager method)

 	(pyplanet.contrib.command.CommandManager method)

 	
 	exitcode() (pyplanet.god.process.InstanceProcess property)

 	extend_ta() (pyplanet.contrib.map.MapManager method)

F

 	
 	finish (in module pyplanet.apps.core.trackmania.callbacks)

 	finish_reservations() (pyplanet.core.events.manager._SignalManager method)

 	
 	finish_start() (pyplanet.core.events.manager._SignalManager method)

 	format_time() (in module pyplanet.utils.times)

G

 	
 	game (pyplanet.core.game._Game attribute)

 	game_dependencies (pyplanet.apps.AppConfig attribute)

 	game_from_environment() (pyplanet.core.game._Game method)

 	game_full() (pyplanet.core.game._Game property)

 	GbxException

 	GbxParser (class in pyplanet.utils.gbxparser)

 	get_all() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.manager.AppSettingManager method)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager method)

 	get_all_player_data() (pyplanet.views.template.TemplateView method)

 	get_app_manager() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager method)

 	get_apps() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager method)

 	get_attribute() (pyplanet.core.ui.ui_properties.UIProperties method)

 	get_callback() (pyplanet.core.events.manager._SignalManager method)

 	get_categories() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.manager.AppSettingManager method)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager method)

 	get_command_by_command_text() (pyplanet.contrib.command.CommandManager method)

 	get_context_data() (pyplanet.views.generics.list.ListView method)

 	(pyplanet.views.template.TemplateView method)

 	get_current_full_script() (pyplanet.contrib.mode.ModeManager method)

 	get_current_script() (pyplanet.contrib.mode.ModeManager method)

 	get_current_script_info() (pyplanet.contrib.mode.ModeManager method)

 	
 	get_data() (pyplanet.views.generics.list.ManualListView method)

 	get_map() (pyplanet.contrib.map.MapManager method)

 	get_map_by_index() (pyplanet.contrib.map.MapManager method)

 	get_model() (pyplanet.contrib.setting.Setting method)

 	get_next_full_script() (pyplanet.contrib.mode.ModeManager method)

 	get_next_script() (pyplanet.contrib.mode.ModeManager method)

 	get_params() (pyplanet.contrib.command.Command method)

 	get_per_player_data() (pyplanet.views.template.TemplateView method)

 	get_perm() (pyplanet.contrib.permission.PermissionManager method)

 	get_player() (pyplanet.contrib.player.PlayerManager method)

 	get_player_by_id() (pyplanet.contrib.player.PlayerManager method)

 	get_player_data() (pyplanet.views.template.TemplateView method)

 	get_setting() (pyplanet.contrib.setting.GlobalSettingManager method)

 	(pyplanet.contrib.setting.manager.AppSettingManager method)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager method)

 	get_settings() (pyplanet.contrib.mode.ModeManager method)

 	get_signal() (pyplanet.core.events.manager._SignalManager method)

 	get_value() (pyplanet.contrib.setting.Setting method)

 	get_variables() (pyplanet.contrib.mode.ModeManager method)

 	get_visibility() (pyplanet.core.ui.ui_properties.UIProperties method)

 	give_up (in module pyplanet.apps.core.trackmania.callbacks)

 	GlobalSettingManager (class in pyplanet.contrib.setting)

 	(class in pyplanet.contrib.setting.manager)

 	glue() (pyplanet.core.events.callback.Callback method)

 	graceful() (pyplanet.god.process.InstanceProcess method)

H

 	
 	handle() (pyplanet.contrib.command.Command method)

 	handle_catch_all() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.generics.list.ListView method)

 	(pyplanet.views.template.TemplateView method)

 	handle_connect() (pyplanet.contrib.player.PlayerManager method)

 	handle_disconnect() (pyplanet.contrib.player.PlayerManager method)

 	handle_generic() (in module pyplanet.core.events.callback)

 	
 	handle_map_change() (pyplanet.contrib.map.MapManager method)

 	has_listeners() (pyplanet.core.events.dispatcher.Signal method)

 	has_permission() (pyplanet.contrib.command.Command method)

 	(pyplanet.contrib.permission.PermissionManager method)

 	help_entries() (pyplanet.contrib.command.CommandManager method)

 	hide() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.template.TemplateView method)

 	human_name (pyplanet.apps.AppConfig attribute)

I

 	
 	import_app() (pyplanet.apps.AppConfig static method)

 	ImproperlyConfigured

 	init() (pyplanet.apps.Apps method)

 	init_app() (pyplanet.core.events.manager._SignalManager method)

 	initiate_setting() (pyplanet.contrib.setting.Setting method)

 	Instance (class in pyplanet.core.instance)

 	
 	InstanceProcess (class in pyplanet.god.process)

 	InvalidAppModule

 	InvalidParamException

 	is_alive() (pyplanet.god.process.InstanceProcess method)

 	is_game_supported() (pyplanet.apps.AppConfig method)

 	is_mode_supported() (pyplanet.apps.AppConfig method)

 	is_valid() (pyplanet.contrib.command.ParameterParser method)

L

 	
 	label (pyplanet.apps.AppConfig attribute)

 	ladder_max (pyplanet.core.game._Game attribute)

 	ladder_min (pyplanet.core.game._Game attribute)

 	listen() (pyplanet.core.events.manager._SignalManager method)

 	ListView (class in pyplanet.views.generics.list)

 	
 	load_blacklist() (pyplanet.contrib.player.PlayerManager method)

 	load_guestlist() (pyplanet.contrib.player.PlayerManager method)

 	load_matchsettings() (pyplanet.contrib.map.MapManager method)

 	loading_map_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	loading_map_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	LocalDriver (class in pyplanet.core.storage.drivers.local)

M

 	
 	manialink_answer (in module pyplanet.apps.core.maniaplanet.callbacks.ui)

 	ManialinkMemoryLeakException

 	ManualListView (class in pyplanet.views.generics.list)

 	map_begin (in module pyplanet.apps.core.maniaplanet.callbacks.map)

 	map_end (in module pyplanet.apps.core.maniaplanet.callbacks.map)

 	map_loaded() (pyplanet.contrib.player.PlayerManager method)

 	map_start (in module pyplanet.apps.core.maniaplanet.callbacks.map)

 	map_start__end (in module pyplanet.apps.core.maniaplanet.callbacks.map)

 	MapException

 	MapIncompatible

 	MapManager (class in pyplanet.contrib.map)

 	
 	MapNotFound

 	maps() (pyplanet.contrib.map.MapManager property)

 	match() (pyplanet.contrib.command.Command method)

 	match_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	match_end__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	match_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	match_start__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	max_players() (pyplanet.contrib.player.PlayerManager property)

 	max_spectators() (pyplanet.contrib.player.PlayerManager property)

 	mode_dependencies (pyplanet.apps.AppConfig attribute)

 	ModeIncompatible

 	ModeManager (class in pyplanet.contrib.mode)

N

 	
 	name (pyplanet.apps.AppConfig attribute)

 	
 	next_map() (pyplanet.contrib.map.MapManager property)

 	NotValidated

O

 	
 	on_armor_empty (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_capture (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_command (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_default (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_destroy() (pyplanet.apps.AppConfig method)

 	on_echo (in module pyplanet.apps.core.maniaplanet.callbacks.other)

 	on_fall_damage (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_hit (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_init() (pyplanet.apps.AppConfig method)

 	on_near_miss (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_shoot (in module pyplanet.apps.core.shootmania.callbacks.base)

 	
 	on_shot_deny (in module pyplanet.apps.core.shootmania.callbacks.base)

 	on_start() (pyplanet.apps.AppConfig method)

 	(pyplanet.contrib.mode.ModeManager method)

 	(pyplanet.contrib.permission.PermissionManager method)

 	(pyplanet.contrib.player.PlayerManager method)

 	on_stop() (pyplanet.apps.AppConfig method)

 	online() (pyplanet.contrib.player.PlayerManager property)

 	online_logins() (pyplanet.contrib.player.PlayerManager property)

 	open() (pyplanet.core.storage.storage.Storage method)

 	open_map() (pyplanet.core.storage.storage.Storage method)

 	open_match_settings() (pyplanet.core.storage.storage.Storage method)

P

 	
 	ParameterParser (class in pyplanet.contrib.command)

 	ParamException

 	ParamParseException

 	ParamValidateException

 	parse() (pyplanet.contrib.command.ParameterParser method)

 	parse_parameter() (pyplanet.contrib.command.ParameterParser method)

 	path (pyplanet.apps.AppConfig attribute)

 	performance_mode() (pyplanet.core.instance.Instance property)

 	PermissionManager (class in pyplanet.contrib.permission)

 	play_loop_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	play_loop_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	player_added (in module pyplanet.apps.core.shootmania.callbacks.base)

 	player_chat (in module pyplanet.apps.core.maniaplanet.callbacks.player)

 	player_connect (in module pyplanet.apps.core.maniaplanet.callbacks.player)

 	player_disconnect (in module pyplanet.apps.core.maniaplanet.callbacks.player)

 	player_enter_player_slot (in module pyplanet.apps.core.maniaplanet.callbacks.player)

 	player_enter_spectator_slot (in module pyplanet.apps.core.maniaplanet.callbacks.player)

 	player_info_changed (in module pyplanet.apps.core.maniaplanet.callbacks.player)

 	player_reload (in module pyplanet.apps.core.shootmania.callbacks.joust)

 	player_removed (in module pyplanet.apps.core.shootmania.callbacks.base)

 	player_request_action_change (in module pyplanet.apps.core.shootmania.callbacks.base)

 	player_request_respawn (in module pyplanet.apps.core.shootmania.callbacks.base)

 	player_score_points (in module pyplanet.apps.core.shootmania.callbacks.royal)

 	player_spawn (in module pyplanet.apps.core.shootmania.callbacks.royal)

 	player_throws_object (in module pyplanet.apps.core.shootmania.callbacks.base)

 	player_touches_object (in module pyplanet.apps.core.shootmania.callbacks.base)

 	player_triggers_sector (in module pyplanet.apps.core.shootmania.callbacks.base)

 	PlayerManager (class in pyplanet.contrib.player)

 	PlayerNotFound

 	playlist_has_map() (pyplanet.contrib.map.MapManager method)

 	playlist_modified (in module pyplanet.apps.core.maniaplanet.callbacks.map)

 	podium_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	podium_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	populate() (pyplanet.apps.Apps method)

 	(pyplanet.god.pool.EnvironmentPool method)

 	prepare() (pyplanet.contrib.chat.ChatManager method)

 	prepare_raw() (pyplanet.contrib.chat.ChatManager method)

 	previous_map() (pyplanet.contrib.map.MapManager property)

 	process() (pyplanet.core.events.dispatcher.Signal method)

 	PromptView (class in pyplanet.views.generics.alert)

 	pyplanet.apps (module)

 	pyplanet.apps.core.maniaplanet.callbacks.flow (module)

 	pyplanet.apps.core.maniaplanet.callbacks.map (module)

 	pyplanet.apps.core.maniaplanet.callbacks.other (module)

 	pyplanet.apps.core.maniaplanet.callbacks.player (module)

 	pyplanet.apps.core.maniaplanet.callbacks.ui (module)

 	pyplanet.apps.core.shootmania.callbacks.base (module)

 	pyplanet.apps.core.shootmania.callbacks.elite (module)

 	
 	pyplanet.apps.core.shootmania.callbacks.joust (module)

 	pyplanet.apps.core.shootmania.callbacks.royal (module)

 	pyplanet.apps.core.trackmania.callbacks (module)

 	pyplanet.contrib.chat (module)

 	pyplanet.contrib.command (module)

 	pyplanet.contrib.command.exceptions (module)

 	pyplanet.contrib.converter (module)

 	pyplanet.contrib.converter.base (module)

 	pyplanet.contrib.converter.uaseco (module)

 	pyplanet.contrib.converter.xaseco2 (module)

 	pyplanet.contrib.map (module)

 	pyplanet.contrib.map.exceptions (module)

 	pyplanet.contrib.mode (module)

 	pyplanet.contrib.mode.signals (module)

 	pyplanet.contrib.permission (module)

 	pyplanet.contrib.permission.exceptions (module)

 	pyplanet.contrib.player (module)

 	pyplanet.contrib.player.exceptions (module)

 	pyplanet.contrib.setting (module)

 	pyplanet.contrib.setting.exceptions (module)

 	pyplanet.contrib.setting.manager (module)

 	pyplanet.core.events.callback (module)

 	pyplanet.core.events.dispatcher (module)

 	pyplanet.core.events.manager (module)

 	pyplanet.core.exceptions (module)

 	pyplanet.core.instance (module)

 	pyplanet.core.storage (module)

 	pyplanet.core.storage.drivers (module)

 	pyplanet.core.storage.drivers.asyncssh (module)

 	pyplanet.core.storage.drivers.local (module)

 	pyplanet.core.storage.exceptions (module)

 	pyplanet.core.storage.storage (module)

 	pyplanet.core.ui (module)

 	pyplanet.core.ui.components (module)

 	pyplanet.core.ui.exceptions (module)

 	pyplanet.core.ui.filters (module)

 	pyplanet.core.ui.loader (module)

 	pyplanet.core.ui.template (module)

 	pyplanet.core.ui.ui_properties (module)

 	pyplanet.god.pool (module)

 	pyplanet.god.process (module)

 	pyplanet.utils.gbxparser (module)

 	pyplanet.utils.style (module)

 	pyplanet.utils.times (module)

 	pyplanet.views.base (module)

 	pyplanet.views.generics.alert (module)

 	pyplanet.views.generics.list (module)

 	pyplanet.views.template (module)

 	PyPlanetLoader (class in pyplanet.core.ui.loader)

R

 	
 	recursive_settings() (pyplanet.contrib.setting.GlobalSettingManager property)

 	(pyplanet.contrib.setting.manager.GlobalSettingManager property)

 	refresh() (pyplanet.views.generics.list.ListView method)

 	register() (pyplanet.contrib.command.CommandManager method)

 	(pyplanet.contrib.permission.PermissionManager method)

 	(pyplanet.contrib.setting.manager.AppSettingManager method)

 	(pyplanet.core.events.dispatcher.Signal method)

 	register_signal() (pyplanet.core.events.manager._SignalManager method)

 	remove_map() (pyplanet.contrib.map.MapManager method)

 	(pyplanet.core.storage.storage.Storage method)

 	render() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.template.TemplateView method)

 	
 	request_respawn (in module pyplanet.apps.core.trackmania.callbacks)

 	reset() (pyplanet.core.ui.ui_properties.UIProperties method)

 	respawn (in module pyplanet.apps.core.trackmania.callbacks)

 	restart() (pyplanet.god.pool.EnvironmentPool method)

 	results (in module pyplanet.apps.core.shootmania.callbacks.joust)

 	(in module pyplanet.apps.core.shootmania.callbacks.royal)

 	round_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	round_end__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	round_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	round_start__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

S

 	
 	save_blacklist() (pyplanet.contrib.player.PlayerManager method)

 	save_guestlist() (pyplanet.contrib.player.PlayerManager method)

 	save_matchsettings() (pyplanet.contrib.map.MapManager method)

 	scores (in module pyplanet.apps.core.shootmania.callbacks.base)

 	(in module pyplanet.apps.core.trackmania.callbacks)

 	script_mode_changed (in module pyplanet.contrib.mode.signals)

 	seek() (pyplanet.utils.gbxparser.GbxParser method)

 	selected_players (in module pyplanet.apps.core.shootmania.callbacks.joust)

 	send() (pyplanet.core.events.dispatcher.Signal method)

 	send_robust() (pyplanet.core.events.dispatcher.Signal method)

 	SerializationException

 	serialize_value() (pyplanet.contrib.setting.Setting method)

 	server_chat (in module pyplanet.apps.core.maniaplanet.callbacks.other)

 	server_data_dir (pyplanet.core.game._Game attribute)

 	server_download_rate (pyplanet.core.game._Game attribute)

 	server_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	server_end__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	server_ip (pyplanet.core.game._Game attribute)

 	server_is_dedicated (pyplanet.core.game._Game attribute)

 	server_is_private (pyplanet.core.game._Game attribute)

 	server_is_server (pyplanet.core.game._Game attribute)

 	server_language (pyplanet.core.game._Game attribute)

 	server_map_dir (pyplanet.core.game._Game attribute)

 	server_max_players (pyplanet.core.game._Game attribute)

 	server_max_specs (pyplanet.core.game._Game attribute)

 	server_name (pyplanet.core.game._Game attribute)

 	server_next_max_players (pyplanet.core.game._Game attribute)

 	server_next_max_specs (pyplanet.core.game._Game attribute)

 	server_p2p_port (pyplanet.core.game._Game attribute)

 	server_password (in module pyplanet.apps.core.maniaplanet.callbacks.other)

 	(pyplanet.core.game._Game attribute)

 	server_path (pyplanet.core.game._Game attribute)

 	server_player_id (pyplanet.core.game._Game attribute)

 	server_player_login (pyplanet.core.game._Game attribute)

 	server_port (pyplanet.core.game._Game attribute)

 	server_skin_dir (pyplanet.core.game._Game attribute)

 	server_spec_password (pyplanet.core.game._Game attribute)

 	server_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	server_start__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	server_upload_rate (pyplanet.core.game._Game attribute)

 	set_attribute() (pyplanet.core.ui.ui_properties.UIProperties method)

 	set_current_map() (pyplanet.contrib.map.MapManager method)

 	
 	set_next_map() (pyplanet.contrib.map.MapManager method)

 	set_next_script() (pyplanet.contrib.mode.ModeManager method)

 	set_self() (pyplanet.core.events.dispatcher.Signal method)

 	set_value() (pyplanet.contrib.setting.Setting method)

 	set_visibility() (pyplanet.core.ui.ui_properties.UIProperties method)

 	Setting (class in pyplanet.contrib.setting)

 	setting (pyplanet.apps.config._AppContext attribute)

 	SettingException

 	SFTPDriver (class in pyplanet.core.storage.drivers.asyncssh)

 	show_alert() (in module pyplanet.views.generics.alert)

 	shutdown() (pyplanet.god.pool.EnvironmentPool method)

 	(pyplanet.god.process.InstanceProcess method)

 	Signal (class in pyplanet.core.events.dispatcher)

 	Signal.Meta (class in pyplanet.core.events.dispatcher)

 	SignalException

 	SignalGlueStop

 	signals (pyplanet.apps.config._AppContext attribute)

 	single_list (pyplanet.views.generics.list.ListView attribute)

 	start() (pyplanet.apps.Apps method)

 	(pyplanet.core.instance.Instance method)

 	(pyplanet.god.pool.EnvironmentPool method)

 	(pyplanet.god.process.InstanceProcess method)

 	start_countdown (in module pyplanet.apps.core.trackmania.callbacks)

 	start_line (in module pyplanet.apps.core.trackmania.callbacks)

 	StaticManiaLink (class in pyplanet.core.ui.components)

 	status_changed (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	stop() (pyplanet.apps.Apps method)

 	(pyplanet.core.instance.Instance method)

 	Storage (class in pyplanet.core.storage.storage)

 	StorageException

 	STRIP_ALL (in module pyplanet.utils.style)

 	STRIP_CAPITALS (in module pyplanet.utils.style)

 	STRIP_COLORS (in module pyplanet.utils.style)

 	STRIP_LINKS (in module pyplanet.utils.style)

 	STRIP_SHADOWS (in module pyplanet.utils.style)

 	STRIP_SIZES (in module pyplanet.utils.style)

 	stunt (in module pyplanet.apps.core.trackmania.callbacks)

 	style_strip() (in module pyplanet.utils.style)

 	subscribe() (pyplanet.core.ui.components.DynamicManiaLink method)

 	(pyplanet.core.ui.components.StaticManiaLink method)

 	(pyplanet.views.base.View method)

 	(pyplanet.views.template.TemplateView method)

T

 	
 	Template (class in pyplanet.core.ui.template)

 	TemplateView (class in pyplanet.views.template)

 	tmnext_ko_elimination (in module pyplanet.apps.core.trackmania.callbacks)

 	tmnext_properties (in module pyplanet.apps.core.trackmania.callbacks)

 	TransportException

 	turn_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	(in module pyplanet.apps.core.shootmania.callbacks.elite)

 	
 	turn_end__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	turn_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	(in module pyplanet.apps.core.shootmania.callbacks.elite)

 	turn_start__end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	type_name() (pyplanet.contrib.setting.Setting property)

 	TypeUnknownException

U

 	
 	UasecoConverter (class in pyplanet.contrib.converter.uaseco)

 	ui (pyplanet.apps.config._AppContext attribute)

 	UIException

 	UIProperties (class in pyplanet.core.ui.ui_properties)

 	UIPropertyDoesNotExist

 	unloading_map_end (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	unloading_map_start (in module pyplanet.apps.core.maniaplanet.callbacks.flow)

 	
 	unregister() (pyplanet.core.events.dispatcher.Signal method)

 	unserialize_value() (pyplanet.contrib.setting.Setting method)

 	update_next_settings() (pyplanet.contrib.mode.ModeManager method)

 	update_next_variables() (pyplanet.contrib.mode.ModeManager method)

 	update_settings() (pyplanet.contrib.mode.ModeManager method)

 	update_variables() (pyplanet.contrib.mode.ModeManager method)

 	upload_map() (pyplanet.contrib.map.MapManager method)

 	usage_text() (pyplanet.contrib.command.Command property)

V

 	
 	View (class in pyplanet.views.base)

 	
 	vote_updated (in module pyplanet.apps.core.maniaplanet.callbacks.other)

W

 	
 	wait_for_input() (pyplanet.views.generics.alert.PromptView method)

 	wait_for_reaction() (pyplanet.views.generics.alert.AlertView method)

 	warmup_end (in module pyplanet.apps.core.trackmania.callbacks)

 	warmup_end_round (in module pyplanet.apps.core.trackmania.callbacks)

 	warmup_start (in module pyplanet.apps.core.trackmania.callbacks)

 	
 	warmup_start_round (in module pyplanet.apps.core.trackmania.callbacks)

 	warmup_status (in module pyplanet.apps.core.trackmania.callbacks)

 	watchdog() (pyplanet.god.pool.EnvironmentPool method)

 	waypoint (in module pyplanet.apps.core.trackmania.callbacks)

 	will_restart() (pyplanet.god.process.InstanceProcess property)

X

 	
 	Xaseco2Converter (class in pyplanet.contrib.converter.xaseco2)

 Overview: module code

 All modules for which code is available

	pyplanet.apps.apps

	pyplanet.apps.config

	pyplanet.contrib.chat.manager

	pyplanet.contrib.command.command

	pyplanet.contrib.command.exceptions

	pyplanet.contrib.command.manager

	pyplanet.contrib.command.params

	pyplanet.contrib.converter.base

	pyplanet.contrib.converter.uaseco

	pyplanet.contrib.converter.xaseco2

	pyplanet.contrib.map.exceptions

	pyplanet.contrib.map.manager

	pyplanet.contrib.mode.manager

	pyplanet.contrib.permission.manager

	pyplanet.contrib.player.exceptions

	pyplanet.contrib.player.manager

	pyplanet.contrib.setting.exceptions

	pyplanet.contrib.setting.manager

	pyplanet.contrib.setting.setting

	pyplanet.core.controller

	pyplanet.core.events.callback

	pyplanet.core.events.dispatcher

	pyplanet.core.events.manager

	pyplanet.core.exceptions

	pyplanet.core.game

	pyplanet.core.instance

	pyplanet.core.storage.drivers.asyncssh

	pyplanet.core.storage.drivers.local

	pyplanet.core.storage.exceptions

	pyplanet.core.storage.storage

	pyplanet.core.ui

	pyplanet.core.ui.components.manialink

	pyplanet.core.ui.exceptions

	pyplanet.core.ui.loader

	pyplanet.core.ui.template

	pyplanet.core.ui.ui_properties

	pyplanet.god.pool

	pyplanet.god.process

	pyplanet.utils.gbxparser

	pyplanet.utils.style

	pyplanet.utils.times

	pyplanet.views.base

	pyplanet.views.generics.alert

	pyplanet.views.generics.list

	pyplanet.views.template

 pyplanet.apps.apps

 Source code for pyplanet.apps.apps

import threading
import logging

from collections import OrderedDict

from pyplanet.utils.toposort import toposort
from pyplanet.apps.config import AppConfig, AppState
from pyplanet.core.exceptions import ImproperlyConfigured

[docs]class Apps:
	"""
	The apps class contains the context applications, loaded or not loaded in order of declaration or requirements
	if given by app configuration.

	The apps should contain a configuration class that could be loaded for reading out metadata, options and other
	useful information such as description, author, version and more.
	"""

	def __init__(self, instance):
		"""
		Initiate registry with pre-loaded apps.

		:param instance: Instance of the controller.
		:type instance: pyplanet.core.instance.Instance
		"""
		self.instance = instance

		self.apps = OrderedDict()
		self.unloaded_apps = OrderedDict()

		# Set ready states.
		self.apps_ready = self.ready = False

		# Set a lock for threading.
		self._lock = threading.Lock()

		# Listen to events
		self.instance.signals.listen('contrib.mode:script_mode_changed', self._on_mode_change)

[docs]	def populate(self, apps, in_order=False):
		"""
		Loads application into the apps registry. Once you populate, the order isn't yet been decided.
		After all imports are done you should shuffle the apps list so it's in the right order of execution!

		:param apps: Apps list.
		:param in_order: Is the list already in order?
		:type apps: list
		"""
		if self.ready:
			return

		populated_apps = dict()
		dep_dict = dict()

		# Load modules.
		for entry in apps:
			app = AppConfig.import_app(entry, self.instance)

			# Check if the app is unique.
			if app.label in self.apps:
				raise ImproperlyConfigured('Application labels aren\'t unique! Duplicates: {}'.format(app.label))

			# Inject apps instance into app itself.
			app.apps = self

			# Set state on app.
			app.state = AppState.UNLOADED

			# Get dependencies to other apps.
			deps = getattr(app, 'app_dependencies', list())
			if not type(deps) is list:
				deps = list()

			# Add to the list so it can get ordered by dependencies. (not if in_order is true).
			if in_order:
				self.apps[app.label] = app
			else:
				populated_apps[app.label] = app

				# Add nodes of dependencies.
				dep_dict[app.label] = deps

		if in_order:
			return

		# Determinate order.
		order = toposort(dep_dict)

		# Add in order
		for label in order:
			try:
				self.apps[label] = populated_apps[label]
			except KeyError:
				if label.startswith('core.'):
					pass
				else:
					raise Exception('One of the apps depends on a non existing app: {}'.format(label))

[docs]	async def check(self, on_start=False):
		"""
		Check and remove unsupported apps based on the current game and script mode. Also loads unloaded apps and try
		if the mode and game does support it again.
		"""
		# Check if disabled apps can be loaded again.
		for app_label, app_module in list(self.unloaded_apps.items()):
			try:
				# Load the module and initiate by creating the app class instance.
				self.populate([app_module], in_order=True)
				if app_label not in self.apps:
					raise Exception() # Flow control, stop executing restart of app.

				# Init + start the app again.
				await self.apps[app_label].on_init()
				await self.apps[app_label].on_start()

				# Clear the label from the unloaded list.
				del self.unloaded_apps[app_label]

				logging.info('(Re)loaded app {} as it seems that it supports this game/mode again.'.format(app_label))
			except Exception as e:
				logging.debug('Can\'t start app {}, Got exception with error: {}'.format(app_label, str(e)))
				# logging.exception(e)
				# Some apps can't be reloaded.
				pass

		# Check enabled apps, and replace the apps dictionary with the up-to-date apps.
		script_name = await self.instance.mode_manager.get_current_script(refresh=True)
		apps_dict = OrderedDict()
		for label, app in self.apps.items():
			if not app.is_game_supported(self.instance.game.game_full):
				logging.warning('Unloading app {}. Doesn\'t support the current game \'{}\'!'.format(
					label, self.instance.game.game_full
))
				if not on_start:
					await app.on_stop()
				await app.on_destroy()

				self.unloaded_apps[label] = app.module.__name__
				del app

			elif not app.is_mode_supported(script_name):
				logging.warning('Unloading app {}. Doesn\'t support the current script mode!'.format(label))
				if not on_start:
					await app.on_stop()
				await app.on_destroy()

				self.unloaded_apps[label] = app.module.__name__
				del app

			else:
				apps_dict[label] = app

		self.apps = apps_dict

[docs]	async def discover(self):
		"""
		The discover function will discover all models, signals and more
		from apps in the right order.
		"""
		for label, app in self.apps.items():
			# Discover models.
			self.instance.db.registry.init_app(app)

			# Discover signals.
			self.instance.signals.init_app(app)

		# Finishing signal manager.
		self.instance.signals.finish_reservations()

[docs]	async def init(self):
		"""
		This method will initiate all apps in order and in series.
		"""
		if self.apps_ready:
			raise Exception('Apps are not yet ordered!')
		for label, app in self.apps.items():
			await app.on_init()

[docs]	async def start(self):
		"""
		This method will start all apps that are previously initiated.
		"""
		if self.apps_ready:
			raise Exception('Apps are not yet ordered!')

		# The apps are in order, lets loop over them.
		for label, app in self.apps.items():
			await app.on_start()
			app.state = AppState.LOADED
			logging.debug('App is ready: {}'.format(label))
		logging.info('Apps successfully started!')

[docs]	async def stop(self):
		"""
		This method is executed when the instance is shutting down (will stop all the apps).
		"""
		for label, app in reversed(self.apps.items()):
			if app.state == AppState.LOADED:
				await app.on_stop()
				logging.debug('Stopped app {}'.format(label))
		logging.info('Apps successfully stopped!')

	async def _on_mode_change(self, unloaded_script, loaded_script, **kwargs):
		await self.check()

 pyplanet.apps.config

 Source code for pyplanet.apps.config

import inspect
import importlib
import logging
import os

from pyplanet.core.exceptions import ImproperlyConfigured, InvalidAppModule

[docs]class _AppContext:
	"""
	The app context holds instances of core/contrib components that must be managed on a per app base. Such as the UI
	registration and distribution.
	"""
	def __init__(self, app):
		"""
		Initiate the App Context. Used by several core and contribs to have it's own manager instance per app.
		You should always use the managers of your local app at first!

		:param app: App Config instance.
		:type app: pyplanet.apps.config.AppConfig
		"""
		self.ui = app.instance.ui_manager.create_app_manager(app)
		"""
		UI Component. See :doc:`UI Classes </api/core_ui>`.
		"""

		self.setting = app.instance.setting_manager.create_app_manager(app)
		"""
		Setting Contrib Component. See :doc:`Setting Classes </api/contrib_setting>`.
		"""

		self.signals = app.instance.signals.create_app_manager(app)
		"""
		Signal manager. See :doc:`Signal Manager </api/core_events>`.
		"""

	async def on_destroy(self):
		await self.ui.on_destroy()
		await self.signals.on_destroy()

class AppState:
	UNLOADED = 0
	LOADED = 1

[docs]class AppConfig:
	"""
	This class is the base class for the Applications metadata class. The class holds information and hooks
	that will be executed after initiation for example.

	.. code-block:: python

		class MyApp(AppConfig):

			async def on_start(self):
				print('we are staring!!')

	"""

	name = None
	label = None
	human_name = None
	path = None

	app_dependencies = None
	"""
	You can provide a list of dependencies to other apps (each entry needs to be a string of the app label!)
	"""

	mode_dependencies = None
	"""
	You can provide a list of gamemodes that are required to activate the app. Gamemodes needs to be declared as
	script names.
	You can override this behaviour by defining the following method in your config class

	.. code-block :: python

		def is_mode_supported(self, mode):
			return mode.lower().startswith('TimeAttack')

	"""

	game_dependencies = None
	"""
	You can provide a list of game dependencies that needs to meet when the app is started. For example you can provide:

	.. code-block :: python

		game_dependencies = ['trackmania']

	You can override this behaviour by defining the following method in your config class

	.. code-block :: python

		def is_game_supported(self, game):
			return game != 'questmania'

	"""

	def __init__(self, app_name, app_module, instance):
		"""
		Init app config.

		:param app_name: App Name (from module path).
		:param app_module: App Module.
		:param instance: Instance of controller
		:type app_name: str
		:type app_module: str
		:type instance: pyplanet.core.instance.Instance
		"""
		# The full python module path. The postfix `*.app` is always the same!
		# Example: pyplanet.contrib.apps.games.trackmania.app
		self.name = app_name

		# The apps root module.
		# Example: pyplanet.contrib.apps.games.trackmania
		self.module = app_module

		# The apps registry will be injected into the app config.
		self.apps = None

		# Make sure we give the core attribute the default value of false. This indicates if it's an internally
		# module.
		self.core = getattr(self, 'core', False)

		# The label can be given by the module, or automatically determinated on the last component.
		if not hasattr(self, 'label') or getattr(self, 'label', None) is None:
			self.label = app_name.rpartition('.')[2]

			# If the module is a core contrib module, we give the label a prefix (contrib.app).
			if self.core is True:
				self.label = 'core.{}'.format(self.label)

		# Human-readable name for the application eg. `MyApp`.
		if not hasattr(self, 'human_name') or getattr(self, 'human_name', None) is None:
			self.human_name = self.label.title()

		# Filesystem path to the application directory eg.
		if not hasattr(self, 'path') or getattr(self, 'path') is None:
			self.path = self._path_from_module(app_module)

		# The instance and related app context managers.
		self.instance = instance
		self.context = _AppContext(self)

		# State of app.
		self.state = AppState.UNLOADED

	def __repr__(self):
		return '<%s: %s>' % (self.__class__.__name__, self.label)

	###
	# Lifecycle Methods
	###

[docs]	async def on_init(self):
		"""
		The on_init will be called before all apps are started (just before the on_ready). This will allow the app
		to register things like commands, permissions and other things that are important and don't require other
		apps to be ready.
		"""

[docs]	async def on_start(self):
		"""
		The on_start call is being called after all apps has been started successfully. You should register any stuff
		that is related to any other apps and signals like your `self` context for signals if they are classmethods.
		"""
		# Deprecated: Fix the deprecated method
		if hasattr(self, 'on_ready'):
			logging.warning('on_ready is deprecated, use on_start instead! app: {}'.format(self.label))
			await self.on_ready()

[docs]	async def on_stop(self):
		"""
		The on_stop will be called before stopping the app.
		"""
		pass

[docs]	async def on_destroy(self):
		"""
		On destroy is being called when unloading the app from the memory.
		"""
		await self.context.on_destroy()

	###

[docs]	def is_mode_supported(self, mode):
		if self.mode_dependencies:
			for mode_requirement in self.mode_dependencies:
				if mode_requirement.lower() in mode.lower():
					return True
			return False
		return True

[docs]	def is_game_supported(self, game):
		if self.game_dependencies:
			return game in self.game_dependencies
		return True

	def _path_from_module(self, module):
		"""Attempt to determine app's filesystem path from its module."""
		paths = list(getattr(module, '__path__', []))

		if len(paths) != 1:
			filename = getattr(module, '__file__', None)
			if filename is not None:
				paths = [os.path.dirname(filename)]
			else:
				# Can be bugged for unknown reasons.
				paths = list(set(paths))

		if len(paths) > 1:
			raise ImproperlyConfigured(
				'The app module {} has multiple filesystem locations {}; '
				'you must configure this app with an AppConfig subclass '
				'with a \'path\' class attribute.'.format(module, paths))

		elif not paths:
			raise ImproperlyConfigured(
				'The app module {} has no filesystem location, '
				'you must configure this app with an AppConfig subclass '
				'with a \'path\' class attribute.'.format(module))

		return paths[0]

[docs]	@staticmethod
	def import_app(entry, instance):
		# Import the module, we need to strip down the path into namespace, file and class.
		module_path, app_glue, cls_name = entry.rpartition('.')

		# The app name (full module path to module, not the app!)
		app_name = module_path.rpartition('.')[0]

		if not module_path:
			raise ImproperlyConfigured('Module for your app {} can\'t be found!'.format(entry))

		# The new style definitions works a bit different. We just import the module, search for the first class that is
		# a subclass of AppConfig.
		if cls_name.islower():
			module_path += '.' + cls_name
			app_name = module_path
			cls_name = None

		# Try to load the app module, containing the class.
		try:
			module = importlib.import_module(module_path)

			# If we have a new-style module, check for the first AppConfig extending class in our module.
			# See #109.
			if cls_name is None:
				for name, obj in inspect.getmembers(module):
					if inspect.isclass(obj) and issubclass(obj, AppConfig) and obj.__name__ != 'AppConfig':
						cls_name = obj.__name__
						break

			module = getattr(module, cls_name)
		except TypeError as e:
			raise ImproperlyConfigured(
				'Can\'t load the app {}. Can\'t find the app config! '
				'Check your apps.py and if your app is installed correctly'.format(entry)
) from e
		except ImportError:
			raise ImproperlyConfigured(
				'Can\'t load the app {}. Can\'t find the app config!'.format(entry)
)
		except AttributeError as e:
			raise ImproperlyConfigured(
				'Can\'t load the app {}. Can\'t load the app class!'.format(entry)
) from e

		# Last check if subclass of appconfig.
		if not issubclass(module, AppConfig):
			raise InvalidAppModule('Your required app {} couldn\'t be loaded!'.format(entry))

		# Ensure app_name points to a valid module.
		try:
			app_module = importlib.import_module(app_name)
		except ImportError:
			raise ImproperlyConfigured(
				'Can\'t import {}. Check that \'{}.{}.name\' is correct.'.format(
					app_name, module_path, cls_name
)
)

		return module(app_name, app_module, instance)

 pyplanet.contrib.chat.manager

 Source code for pyplanet.contrib.chat.manager

from pyplanet.contrib import CoreContrib
from pyplanet.contrib.chat.query import ChatQuery

[docs]class ChatManager(CoreContrib):
	"""
	The Chat manager is available with: ``instance.chat`` shortcut.
	"""
	def __init__(self, instance):
		"""
		Initiate, should only be done from the core instance.
		
		:param instance: Instance.
		:type instance: pyplanet.core.instance.Instance
		"""
		self.instance = instance

	def __call__(self, *args, **kwargs):
		if len(args) <= 0:
			return
		query = self.prepare(args[0], raw=kwargs.get('raw', False))

		if len(args) > 1:
			query.to_players(args[1:])

		return query

[docs]	def prepare(self, message=None, raw=False):
		"""
		Prepare a Chat Query by returning a Chat Query object.
		
		:param message: Messsage predefined or build later.
		:param raw: Don't append prefixes or add any automatic message parts.
		:return: Query instance
		:rtype: pyplanet.contrib.chat.query.ChatQuery
		"""
		return ChatQuery(self, message, auto_prefix=not raw)

[docs]	def prepare_raw(self, message=None):
		"""
		Prepare raw message query without prefixes!
		
		:param message: Predefined message.
		:return: Query instance
		:rtype: pyplanet.contrib.chat.query.ChatQuery
		"""
		return self.prepare(message, True)

[docs]	async def execute(self, *queries): # pragma: no cover
		"""
		Execute and send one or multiple chat messages (prepared queries or raw strings) with a multicall.
		
		:param queries: One or more query instances or one or multiple strings that gets send as global messages.
		:return: The results of the multicall.
		"""
		return await self.instance.gbx.multicall(
			*[
				q.gbx_query if isinstance(q, ChatQuery)
				else self.prepare_raw(str(q)).gbx_query

				for q in queries
]
)

 pyplanet.contrib.command.command

 Source code for pyplanet.contrib.command.command

import asyncio
from inspect import iscoroutinefunction

from pyplanet.contrib.command.params import ParameterParser

[docs]class Command:
	"""
	The command instance describes the command itself, the target to fire and all other related information, like
	admin command or aliases.

	Some examples of some commands:

	.. code-block:: python

		# Admin command with permission on it.
		Command(command='reboot', target=self.reboot_pool, perms='admin:reboot', admin=True)

		# Normal user command with optional argument.
		Command(command='list', target=self.show_map_list)\
			.add_param(name='search', required=False)

	"""

	def __init__(
		self, command, target, aliases=None, admin=False, namespace=None, parser=None, perms=None, description=None
):
		"""
		Initiate a command.

		:param command: Command text (prefix without parameters).
		:param target: Target method to fire.
		:param aliases: Alias(ses) for the command.
		:param admin: Register command in admin context.
		:param namespace: Custom namespace, this can be used to create commands like '/prog start' and '/prog end'
						 where 'prog' is the namespace.
		:param perms: Required parameters, default everyone is allowed.
		:param parser: Custom parser.
		:param description: Description of the command.
		:type command: str
		:type target: any
		:type aliases: str[]
		:type admin: bool
		:type namespace: str, str[]
		:type perms: list,str
		:type parser: any
		:type description: str
		"""
		self.command = command
		self.target = target
		self.aliases = aliases or list()
		self.admin = admin
		self.namespace = namespace
		if isinstance(perms, str):
			perms = [perms]
		self.perms = perms
		self.parser = parser or \
					 ParameterParser('{} {}'.format(self.namespace, self.command) if self.namespace else self.command)
		self.description = description

[docs]	def match(self, raw):
		"""
		Try to match the command with the given input in array style (splitted by spaces).

		:param raw: Raw input, split by spaces.
		:type raw: list
		:return: Boolean if command matches.
		"""
		input = raw[:]

		if len(input) == 0 or (len(input) == 1 and input[0] == ''):
			return False

		if self.admin:
			if input[0][0:1] == '/':
				input[0] = input[0][1:]
			elif input[0] == 'admin':
				input.pop(0)
			else:
				return False

		# Make sure namespace is always an array if provided.
		if self.namespace and not isinstance(self.namespace, (list, tuple)):
			self.namespace = [self.namespace]

		# Check against namespace.
		if len(input) > 0 and self.namespace and any(input[0] == n for n in self.namespace):
			input.pop(0)
		elif self.namespace:
			return False

		if not len(input):
			return False

		command = input.pop(0)
		if self.command == command or command in self.aliases:
			return True
		return False

[docs]	def get_params(self, input):
		"""
		Get params in array from input in array.

		:param input: Array of raw input.
		:type input: list
		:return: Array of parameters, stripped of the command name and namespace, if defined.
		:rtype: list
		"""
		if self.admin:
			if input[0][0:1] == '/':
				input[0] = input[0][1:]
			elif input[0] == 'admin':
				input.pop(0)
		if self.namespace:
			input.pop(0)
		input.pop(0)
		return input

[docs]	def add_param(
		self, name: str,
		nargs=1,
		type=str,
		default=None,
		required: bool=True,
		help: str=None,
		dest: str=None,
):
		"""
		Add positional parameter.

		:param name: Name of parameter, will be used to store result into!
		:param nargs: Number of arguments, use integer or '*' for multiple or infinite.
		:param type: Type of value, keep str to match all types. Use any other to try to parse to the type.
		:param default: Default value when no value is given.
		:param required: Set the parameter required state, defaults to true.
		:param help: Help text to display when parameter is invalid or not given and required.
		:param dest: Destination to save into namespace result (defaults to name).
		:return: parser instance
		:rtype: pyplanet.contrib.command.command.Command
		"""
		self.parser.add_param(
			name=name, nargs=nargs, type=type, default=default, required=required, help=help, dest=dest
)
		return self

[docs]	async def handle(self, instance, player, argv):
		"""
		Handle command parsing and execution.

		:param player: Player object.
		:param argv: Arguments in array
		:type player: pyplanet.apps.core.maniaplanet.models.player.Player
		"""
		# Check permissions.
		if not await self.has_permission(instance, player):
			await instance.chat(
				'zsYou are not authorized to use this command!',
				player.login
)
			return

		# Strip off the namespace and command.
		paramv = self.get_params(argv)

		# Parse, validate and show errors if any.
		self.parser.parse(paramv)
		if not self.parser.is_valid():
			await instance.gbx.multicall(
				instance.chat('zsCommand operation got invalid arguments: {}'.format(', '.join(self.parser.errors)), player),
				instance.chat('zs >> {}'.format(self.usage_text), player),
)
			return

		# We are through. Call our target!
		if iscoroutinefunction(self.target):
			return await self.target(player=player, data=self.parser.data, raw=argv, command=self)
		return self.target(player=player, data=self.parser.data, raw=argv, command=self)

[docs]	async def has_permission(self, instance, player):
		"""
		Checks whether the provided player has the permission to execute this command.
		:param instance: Controller Instance
		:type instance: pyplanet.core.instance.Instance
		:param player: Player requesting execution of this command.
		:type player: pyplanet.apps.core.maniaplanet.models.player.Player
		:return: Whether provided player has permission to execute this command.
		"""
		player_has_permission = True
		if self.perms and len(self.perms) > 0:
			# All the given perms need to be matching!
			is_allowed = await asyncio.gather(*[
				instance.permission_manager.has_permission(player, perm) for perm in self.perms
])
			if not all(allowed is True for allowed in is_allowed):
				player_has_permission = False

		return player_has_permission

	@property
	def usage_text(self):
		"""
		The usage text line for the command.
		"""
		text = 'Usage: /{}{}{}'.format(
			'/' if self.admin else '',
			self.namespace if self.namespace else '',
			self.command
)

		for param in self.parser.params:
			text += ' {}{}:{}{}'.format(
				'[' if not param['required'] else '',
				param['name'],
				getattr(param['type'], '__name__', 'any'),
				']' if not param['required'] else '',
)

		return text

	@property
	def params_text(self):
		text = ''

		param_index = 0
		for param in self.parser.params:
			if param_index > 0:
				text += '\n'

			text += '{}{}:{}{}{}'.format(
				'[' if not param['required'] else '',
				param['name'],
				getattr(param['type'], '__name__', 'any'),
				']' if not param['required'] else '',
				' = {}'.format(param['help']) if param['help'] else ''
)

			param_index += 1

		return text

	@property
	def perms_text(self):
		text = ''

		if self.perms and len(self.perms) > 0:
			perm_index = 0
			for permission in self.perms:
				if perm_index > 0:
					text += '\n'

				text += '{}'.format(permission)

				perm_index += 1

		return text

	def __str__(self):
		# Make sure namespace is always an array if provided.
		if self.namespace and not isinstance(self.namespace, (list, tuple)):
			self.namespace = [self.namespace]

		return '/{}{}{}'.format(
			'/' if self.admin else '',
			'|'.join(self.namespace) if self.namespace and isinstance(self.namespace, (list, tuple)) else self.command,
			' ' + self.command if self.namespace else '',
)

 pyplanet.contrib.command.exceptions

 Source code for pyplanet.contrib.command.exceptions

[docs]class ParamException(Exception):
	pass

[docs]class ParamParseException(ParamException):
	pass

[docs]class ParamValidateException(ParamException):
	pass

[docs]class NotValidated(Exception):
	"""
	Your parser hasn't been called with .parse() before, so no parsing took place!
	"""
	pass

[docs]class InvalidParamException(Exception):
	"""
	Invalid parameter arguments given!
	"""

 pyplanet.contrib.command.manager

 Source code for pyplanet.contrib.command.manager

import textwrap

from pyplanet.contrib import CoreContrib
from pyplanet.contrib.command.command import Command

[docs]class CommandManager(CoreContrib):
	"""
	The Command Manager contributed extension is a manager that controls all chat-commands in the game.
	Your app needs to use this manager to register any custom commands you want to provide.

	You should access this class within your app like this:

	.. code-block:: python

		self.instance.command_manager

	You can register your commands like this:

	.. code-block:: python

		await self.instance.command_manager.register(
			Command(command='reboot', target=self.reboot_pool, perms='admin:reboot', admin=True),
)

	More information of the command and the options of it, see the :class:`pyplanet.contrib.command.Command` class.

	.. warning::

		Don't initiate this class yourself. Access this class from the ``self.instance.command_manager`` instance.

	"""

	def __init__(self, instance):
		"""
		Init manager.

		:param instance: Controller Instance
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance

		self._commands = list()

	async def on_start(self, **kwargs):
		# Register events.
		self._instance.signals.listen('maniaplanet:player_chat', self._on_chat)

[docs]	async def register(self, *commands):
		"""
		Register your command.

		:param commands: Command instance.
		:type commands: pyplanet.contrib.command.command.Command
		"""
		self._commands.extend(commands)

[docs]	async def execute(self, player, command, *args):
		"""
		Execute a command for the given player with the given args.

		:param player: Player instance.
		:type player: pyplanet.apps.core.maniaplanet.models.player.Player
		:param command: Command instance.
		:type command: pyplanet.contrib.command.command.Command
		:param args: Args for the command, will be concat into a string with spaces.
		:return:
		"""
		if isinstance(command, Command):
			command_text = '//' if command.admin else '/'
			if command.namespace:
				command_text += command.namespace + ' '
			command_text += command.command
		else:
			command_text = command

		return await self._on_chat(player, ' '.join([command_text] + list(args)), True)

	async def _on_chat(self, player, text, cmd, **kwargs):
		# Only take action if the chat entry is a command.
		if not cmd:
			return

		# Parse command.
		argv = text.split(' ')
		if not argv:
			return

		# Replace the / in the first part.
		argv[0] = argv[0][1:]

		# Check if we need to ignore the command.
		if len(argv) > 0 and argv[0] in ['serverlogin']:
			return

		# Try to match the command prefix by one of the registered commands.
		command = None
		for cmd in self._commands:
			if cmd.match(argv):
				command = cmd
				break

		# Let the command handle the logic it needs.
		if command:
			return await command.handle(self._instance, player, argv)
		# Send command not found message.
		await self._instance.chat(
			'zsCommand unknown. For all commands type /help or //help. '
			'Powered by $l[http://pypla.net]$FD4Py$369Planet',
			player.login
),

[docs]	async def get_command_by_command_text(self, command):
		"""
		Get command by command text. (Used in the /help command)

		:param command: Command entry, array of strings (split by spaces).
		:return: Command object.
		"""
		# Find the right command.
		for cmd in self._commands:
			if cmd.match(command):
				return cmd
		return None

[docs]	async def help_entries(self, player, admin_only): # pragma: no cover
		"""
		Get all help entries for the player.

		:param player: Player instance.
		:param admin_only: Only the admin commands or non-admin. True for admin only, False for player only.
						Will filter on permissions of the player as well!
		:return: List of commands objects.
		"""
		# All commands.
		commands = [c for c in self._commands if c.admin is admin_only]
		if admin_only:
			commands = [c for c in commands if await c.has_permission(self._instance, player)]

		return commands

 pyplanet.contrib.command.params

 Source code for pyplanet.contrib.command.params

from argparse import Namespace

from pyplanet.contrib.command.exceptions import (
	ParamValidateException, ParamParseException, ParamException,
	NotValidated,
	InvalidParamException)

[docs]class ParameterParser:
	"""
	Parameter Parser.
	
	.. todo::
	
		Write introduction + examples.
		
	"""

	def __init__(self, prog=None):
		self.prog = prog
		self.params = list()

		self._errors = list()
		self.data = object()

[docs]	def add_param(
		self, name: str,
		nargs=1,
		type=str,
		default=None,
		required: bool=True,
		help: str=None,
		dest: str=None,
):
		"""
		Add positional parameter.
		
		:param name: Name of parameter, will be used to store result into!
		:param nargs: Number of arguments, use integer or '*' for multiple or infinite.
		:param type: Type of value, keep str to match all types. Use any other to try to parse to the type.
		:param default: Default value when no value is given.
		:param required: Set the parameter required state, defaults to true.
		:param help: Help text to display when parameter is invalid or not given and required.
		:param dest: Destination to save into namespace result (defaults to name).
		:return: parser instance
		:rtype: pyplanet.contrib.command.ParameterParser
		"""
		self.params.append(dict(
			name=name, nargs=nargs, type=type, default=default, required=required, help=help, dest=dest
))
		return self

[docs]	def parse_parameter(self, param, input, position):
		"""
		Validate and parse param value at input position.
		
		:param param: Param dict given.
		:param input: Full params input (without command or namespace!)
		:param position: Current seek position.
		:type param: dict
		:type input: list
		:type position: int
		:return: value.
		"""
		try:
			part = input[position]
		except IndexError:
			if param['required'] is False:
				return param['default']
			else:
				raise ParamValidateException('param \'{}\' is required'.format(param['name']))

		value = None
		# If we have multiple arguments of the same type, parse it internally.
		if isinstance(param['nargs'], int) and param['nargs'] > 1:
			# We need to clone to prevent infinite loop
			nparam = dict()
			nparam.update(param)
			nparam['nargs'] = 1

			value = []
			errors = []
			for i in range(1, param['nargs']):
				try:
					value.append(self.parse_parameter(nparam, input, position + i))
				except ParamException as e:
					errors.append(str(e))
			if len(errors) > 0:
				raise ParamParseException(', '.join(errors))

		# If we expect multiple (infinite) occurrences.
		elif isinstance(param['nargs'], str) and param['nargs'] == '*':
			# We need to clone to prevent infinite loop
			nparam = dict()
			nparam.update(param)
			nparam['nargs'] = 1

			if value:
				value = [value]
			else:
				value = []

			for i in range(0, len(input)):
				try:
					extra_value = self.parse_parameter(nparam, input, position + i)
					if extra_value is not None:
						value.append(extra_value)
				except ParamException:
					# We will stop here.
					break

		else:
			if param['type'] is int:
				try:
					value = int(part)
				except ValueError:
					raise ParamParseException('param \'{}\' must be an integer'.format(param['name']))
			elif param['type'] is str:
				value = part
			else:
				raise InvalidParamException('Type of parameter \'{}\' is not known.'.format(param['name']))

		return value

[docs]	def parse(self, argv):
		"""
		Parse arguments.
		
		:param argv: arguments.
		"""
		values = dict()

		self.data = None
		self._errors = list()

		for idx, param in enumerate(self.params):
			try:
				values[param['dest'] or param['name']] = self.parse_parameter(param, argv, idx)
			except ParamException as e:
				self._errors.append(str(e))

		self.data = Namespace(**values)

[docs]	def is_valid(self):
		"""
		Is data valid?
		
		:return: boolean
		"""
		if self.data is None:
			raise NotValidated('Parameters not yet parsed, call parse() first.')
		return len(self._errors) == 0

	@property
	def errors(self):
		"""
		Get errors.
		
		:return: array of strings.
		:rtype: list
		"""
		return self._errors

 pyplanet.contrib.converter.base

 Source code for pyplanet.contrib.converter.base

import pymysql
import pymysql.cursors

[docs]class BaseConverter:
	"""
	Base Converter is the abstract converter class.

	Please take a look at the other classes bellow.
	"""
	def __init__(
		self, instance, db_type, db_host, db_name, db_user=None, db_password=None, db_port=None, prefix=None,
		charset='utf8'
):
		"""
		Create converter.

		:param instance: Controller instance.
		:param db_type: Type, mysql by default.
		:param db_host: Hostname
		:param db_name: Name of db schema/database
		:param db_user: Username
		:param db_password: Password
		:param db_port: Port.
		:param prefix: Table prefix.
		:param charset: Charset of source db. Only supporting utf8 now.
		:param extra: Any extra parameters given.
		:type instance: pyplanet.core.instance.Instance
		"""
		self.instance = instance

		self.db_type = db_type
		self.db_host = db_host
		self.db_name = db_name
		self.db_user = db_user
		self.db_password = db_password
		self.db_port = db_port
		self.prefix = prefix or ''
		self.charset = charset

		self.connection = None

	async def connect(self):
		await self.instance.db.connect()
		await self.instance.apps.discover()
		await self.instance.db.initiate()

		if self.db_type != 'mysql':
			raise Exception('We only support mysql converting right now!')

		self.connection = pymysql.connect(
			host=self.db_host, user=self.db_user, password=self.db_password, db=self.db_name, charset=self.charset,
			port=self.db_port or 3306,
			cursorclass=pymysql.cursors.DictCursor
)

	async def start(self):
		if not self.connection:
			raise Exception('Please connect first (connect()).')
		return await self.migrate(self.connection)

	async def migrate(self, source_connection):
		raise NotImplementedError

 pyplanet.contrib.converter.uaseco

 Source code for pyplanet.contrib.converter.uaseco

import datetime

from pyplanet.apps.contrib.karma.models import Karma
from pyplanet.apps.contrib.local_records.models import LocalRecord
from pyplanet.apps.core.maniaplanet.models import Player, Map
from pyplanet.apps.core.statistics.models import Score
from pyplanet.contrib.converter.base import BaseConverter

[docs]class UasecoConverter(BaseConverter):
	"""
	The UAseco Converter uses MySQL to convert the data to the new PyPlanet structure.

	Please take a look at :doc:`Migrating from other controllers </convert/index>` pages for information on how to use
	this.
	"""

	def __init__(self, *args, **kwargs):
		super().__init__(*args, **kwargs)
		self.player_cache = dict()
		self.map_cache = dict()

		if not self.prefix:
			self.prefix = 'uaseco_'

	async def migrate(self, _):
		print('Migrating players...')
		await self.migrate_players()

		print('Migrating maps...')
		await self.migrate_maps()

		print('Migrating records...')
		await self.migrate_local_records()

		print('Migrating karma...')
		await self.migrate_karma()

		print('Migrating times...')
		await self.migrate_times()

	async def migrate_players(self):
		with self.connection.cursor() as cursor:
			cursor.execute('SELECT * FROM {prefix}players'.format(prefix=self.prefix))
			for s_player in cursor.fetchall():
				# Check if we already have this player in our database. If we have, ignore and print message.
				try:
					player = await Player.get_by_login(s_player['Login'])
					self.player_cache[player.login] = player

					print('Player with login \'{}\' already exists, skipping..'.format(s_player['Login']))
					continue
				except:
					try:
						last_seen = datetime.datetime.strptime(s_player['LastVisit'], '%Y-%m-%d %H:%M:%S')
					except:
						last_seen = None

					# Not found, create it:
					player = await Player.create(
						login=s_player['Login'], nickname=s_player['Nickname'],
						last_seen=last_seen,
)
					self.player_cache[player.login] = player

	async def migrate_maps(self):
		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT map.*, author.Login as Author '
				'FROM {prefix}maps as map '
				'JOIN {prefix}authors as author ON map.AuthorId = author.AuthorId'.format(prefix=self.prefix)
)
			for s_map in cursor.fetchall():
				# Check if we already have this map in our database. If we have, ignore and print message.
				try:
					map_instance = await Map.get_by_uid(s_map['Uid'])
					self.map_cache[map_instance.uid] = map_instance

					print('Map with uid \'{}\' already exists, skipping..'.format(s_map['Uid']))
					continue
				except:
					# Not found, create it:
					map_instance = await Map.create(
						uid=s_map['Uid'], name=s_map['Name'],
						# HACK: When the database was converted from XAseco to UAseco earlier, the filename could be Null.
						file=s_map['Filename'] if s_map['Filename'] is not None else '',
						author_login=s_map['Author'],
						environment=s_map['Environment'], map_type=s_map['Type'], map_style=s_map['Style'],
						num_laps=s_map['NbLaps'] if s_map['MultiLap'] == 'true' else None,
						num_checkpoints=s_map['NbCheckpoints'], price=s_map['Cost'],
						time_author=s_map['AuthorTime'], time_bronze=s_map['BronzeTime'],
						time_silver=s_map['SilverTime'], time_gold=s_map['GoldTime'],
)
					self.map_cache[map_instance.uid] = map_instance

	async def migrate_local_records(self):
		if 'local_records' not in self.instance.apps.apps:
			print('Skipping local records. App not activated!')
			return

		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT record.*, map.Uid, player.Login '
				'FROM {prefix}records as record, {prefix}maps as map, {prefix}players as player '
				'WHERE record.MapId = map.MapId AND record.PlayerId = player.PlayerId'.format(
					prefix=self.prefix
)
)
			for s_record in cursor.fetchall():
				# Get map + player
				try:
					map = self.map_cache[s_record['Uid']] if s_record['Uid'] in self.map_cache else await Map.get(uid=s_record['Uid'])
					player = self.player_cache[s_record['Login']] if s_record['Login'] in self.player_cache else await Player.get(login=s_record['Login'])
				except:
					# Skip.
					print('Can\'t convert record, map or player not found. Skipping...')
					continue

				try:
					await LocalRecord.get(map=map, player=player)
					print('Record with uid \'{}\' and player \'{}\' already exists, skipping..'.format(map.uid, player.login))
				except:
					await LocalRecord.create(
						map=map, player=player, score=s_record['Score'], checkpoints=s_record['Checkpoints'],
						created_at=s_record['Date'], updated_at=datetime.datetime.now()
)

	async def migrate_karma(self):
		if 'karma' not in self.instance.apps.apps:
			print('Skipping karma. App not activated!')
			return

		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT rating.*, map.Uid, player.Login '
				'FROM {prefix}ratings AS rating, {prefix}maps AS map, {prefix}players AS player '
				'WHERE rating.MapId = map.MapId AND rating.PlayerId = player.PlayerId'.format(
					prefix=self.prefix
)
)
			for s_karma in cursor.fetchall():
				# Get map + player
				try:
					map = self.map_cache[s_karma['Uid']] if s_karma['Uid'] in self.map_cache else await Map.get(uid=s_karma['Uid'])
					player = self.player_cache[s_karma['Login']] if s_karma['Login'] in self.player_cache else await Player.get(login=s_karma['Login'])
				except:
					# Skip.
					print('Can\'t convert karma, map or player not found. Skipping...')
					continue

				if s_karma['Score'] == 0:
					continue

				try:
					await Karma.get(map=map, player=player)
					print('Karma with uid \'{}\' and player \'{}\' already exists, skipping..'.format(map.uid, player.login))
				except:
					await Karma.create(
						map=map, player=player, score=-1 if s_karma['Score'] < 0 else 1,
						updated_at=datetime.datetime.now()
)

	async def migrate_times(self):
		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT score.*, map.Uid, player.Login '
				'FROM {prefix}times AS score, {prefix}maps AS map, {prefix}players AS player '
				'WHERE score.MapId = map.MapId AND score.PlayerId = player.PlayerId'.format(
					prefix=self.prefix
)
)
			for s_time in cursor.fetchall():
				# Get map + player
				try:
					map = self.map_cache[s_time['Uid']] if s_time['Uid'] in self.map_cache else await Map.get(uid=s_time['Uid'])
					player = self.player_cache[s_time['Login']] if s_time['Login'] in self.player_cache else await Player.get(login=s_time['Login'])
				except:
					# Skip.
					print('Can\'t convert time, map or player not found. Skipping...')
					continue

				if s_time['Score'] == 0:
					continue

				try:
					await Score.get(
						map=map, player=player, score=s_time['Score'], created_at=s_time['Date']
)
					print('Score with uid \'{}\', player \'{}\', score \'{}\' at \'{}\' already exists, skipping..'.format(
						map.uid, player.login, s_time['Score'], s_time['Date'],
))
				except:
					await Score.create(
						map=map, player=player, score=s_time['Score'], checkpoints=s_time['Checkpoints'],
						created_at=s_time['Date'],
)

 pyplanet.contrib.converter.xaseco2

 Source code for pyplanet.contrib.converter.xaseco2

import datetime

from pyplanet.apps.contrib.karma.models import Karma
from pyplanet.apps.contrib.local_records.models import LocalRecord
from pyplanet.apps.core.maniaplanet.models import Player, Map
from pyplanet.apps.core.statistics.models import Score
from pyplanet.contrib.converter.base import BaseConverter

[docs]class Xaseco2Converter(BaseConverter):
	"""
	The XAseco2 Converter uses MySQL to convert the data to the new PyPlanet structure.
	
	Please take a look at :doc:`Migrating from other controllers </convert/index>` pages for information on how to use
	this.
	"""

	def __init__(self, *args, **kwargs):
		super().__init__(*args, **kwargs)
		self.player_cache = dict()
		self.map_cache = dict()

	async def migrate(self, _):
		print('Migrating players...')
		await self.migrate_players()

		print('Migrating maps...')
		await self.migrate_maps()

		print('Migrating records...')
		await self.migrate_local_records()

		print('Migrating karma...')
		await self.migrate_karma()

		print('Migrating times...')
		await self.migrate_times()

	async def migrate_players(self):
		with self.connection.cursor() as cursor:
			cursor.execute('SELECT * FROM players')
			for s_player in cursor.fetchall():
				# Check if we already have this player in our database. If we have, ignore and print message.
				try:
					player = await Player.get_by_login(s_player['Login'])
					self.player_cache[player.login] = player

					print('Player with login \'{}\' already exists, skipping..'.format(s_player['Login']))
					continue
				except:
					# Not found, create it:
					player = await Player.create(
						login=s_player['Login'], nickname=s_player['NickName']
)
					self.player_cache[player.login] = player

	async def migrate_maps(self):
		with self.connection.cursor() as cursor:
			cursor.execute('SELECT * FROM maps')
			for s_map in cursor.fetchall():
				# Check if we already have this player in our database. If we have, ignore and print message.
				try:
					map_instance = await Map.get_by_uid(s_map['Uid'])
					self.map_cache[map_instance.uid] = map_instance

					print('Map with uid \'{}\' already exists, skipping..'.format(s_map['Uid']))
					continue
				except:
					# Not found, create it:
					# HACK: We don't know the file yet. Empty string to fill until pyplanet has started next time.
					map_instance = await Map.create(
						uid=s_map['Uid'], name=s_map['Name'], file='', author_login=s_map['Author'],
						environment=s_map['Environment']
)
					self.map_cache[map_instance.uid] = map_instance

	async def migrate_local_records(self):
		if 'local_records' not in self.instance.apps.apps:
			print('Skipping local records. App not activated!')
			return

		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT records.*, maps.Uid, players.Login '
				'FROM records, maps, players '
				'WHERE records.MapId = maps.Id AND records.PlayerId = players.Id'
)
			for s_record in cursor.fetchall():
				# Get map + player
				try:
					map = self.map_cache[s_record['Uid']] if s_record['Uid'] in self.map_cache else await Map.get(uid=s_record['Uid'])
					player = self.player_cache[s_record['Login']] if s_record['Login'] in self.player_cache else await Player.get(login=s_record['Login'])
				except:
					# Skip.
					print('Can\'t convert record, map or player not found. Skipping...')
					continue

				try:
					await LocalRecord.get(map=map, player=player)
					print('Record with uid \'{}\' and player \'{}\' already exists, skipping..'.format(map.uid, player.login))
				except:
					await LocalRecord.create(
						map=map, player=player, score=s_record['Score'], checkpoints=s_record['Checkpoints'],
						created_at=s_record['Date'], updated_at=datetime.datetime.now()
)

	async def migrate_karma(self):
		if 'karma' not in self.instance.apps.apps:
			print('Skipping karma. App not activated!')
			return

		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT rs_karma.*, maps.Uid, players.Login '
				'FROM rs_karma, maps, players '
				'WHERE rs_karma.MapId = maps.Id AND rs_karma.PlayerId = players.Id'
)
			for s_karma in cursor.fetchall():
				# Get map + player
				try:
					map = self.map_cache[s_karma['Uid']] if s_karma['Uid'] in self.map_cache else await Map.get(uid=s_karma['Uid'])
					player = self.player_cache[s_karma['Login']] if s_karma['Login'] in self.player_cache else await Player.get(login=s_karma['Login'])
				except:
					# Skip.
					print('Can\'t convert karma, map or player not found. Skipping...')
					continue

				if s_karma['Score'] == 0:
					continue

				try:
					await Karma.get(map=map, player=player)
					print('Karma with uid \'{}\' and player \'{}\' already exists, skipping..'.format(map.uid, player.login))
				except:
					await Karma.create(
						map=map, player=player, score=-1 if s_karma['Score'] < 0 else 1,
						updated_at=datetime.datetime.now()
)

	async def migrate_times(self):
		with self.connection.cursor() as cursor:
			cursor.execute(
				'SELECT rs_times.*, maps.Uid, players.Login '
				'FROM rs_times, maps, players '
				'WHERE rs_times.MapId = maps.Id AND rs_times.PlayerId = players.Id'
)
			for s_time in cursor.fetchall():
				# Get map + player
				try:
					map = self.map_cache[s_time['Uid']] if s_time['Uid'] in self.map_cache else await Map.get(uid=s_time['Uid'])
					player = self.player_cache[s_time['Login']] if s_time['Login'] in self.player_cache else await Player.get(login=s_time['Login'])
				except:
					# Skip.
					print('Can\'t convert time, map or player not found. Skipping...')
					continue

				if s_time['Score'] == 0:
					continue

				try:
					await Score.get(
						map=map, player=player, score=s_time['Score'], created_at=datetime.datetime.fromtimestamp(s_time['Date'])
)
					print('Score with uid \'{}\', player \'{}\', score \'{}\' at \'{}\' already exists, skipping..'.format(
						map.uid, player.login, s_time['Score'], s_time['Date'],
))
				except:
					await Score.create(
						map=map, player=player, score=s_time['Score'], checkpoints=s_time['Checkpoints'],
						created_at=datetime.datetime.fromtimestamp(s_time['Date']),
)

 pyplanet.contrib.map.exceptions

 Source code for pyplanet.contrib.map.exceptions

[docs]class MapException(Exception):
	"""Generic map exception by manager."""

[docs]class MapNotFound(MapException):
	"""Map not found"""

[docs]class MapIncompatible(MapException):
	"""The map you want to add/insert/upload is invalid and not suited for the current server config."""

[docs]class ModeIncompatible(MapException):
	"""The current mode doesn't support the given action."""

 pyplanet.contrib.map.manager

 Source code for pyplanet.contrib.map.manager

import asyncio
import os
import logging
import re

from xmlrpc.client import Fault
from peewee import DoesNotExist

from pyplanet.utils.log import handle_exception
from pyplanet.apps.core.maniaplanet.models import Map
from pyplanet.conf import settings
from pyplanet.contrib import CoreContrib
from pyplanet.contrib.map.exceptions import MapNotFound, MapException, ModeIncompatible
from pyplanet.core.exceptions import ImproperlyConfigured

[docs]class MapManager(CoreContrib):
	"""
	Map Manager. Manages the current map pool and the current and next map.

	.. todo::

		Write introduction.

	.. warning::

		Don't initiate this class yourself.

	"""
	def __init__(self, instance):
		"""
		Initiate, should only be done from the core instance.

		:param instance: Instance.
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance
		self.lock = asyncio.Lock()

		# The matchsettings contains the name of the current loaded matchsettings file.
		self._matchsettings = None

		# The maps contain a list of map instances in the order that are in the current loaded list.
		self._maps = set()

		# The current map will always be in this variable. The next map will always be here. It will be updated. once
		# it's updated it should be send to the dedicated to queue the next map.
		self._previous_map = None
		self._current_map = None
		self._next_map = None

		# Hold the original TA limit for the /extend and //extend functions.
		self._is_extended = False
		self._original_ta = None

		# Regular Expression to extract the MX-ID from a filename.
		self._mx_id_regex = re.compile('(?:PyPlanet-MX\\/)([A-Z]{2})-(\\d+)\\.')

	async def on_start(self):
		self._instance.signals.listen('maniaplanet:playlist_modified', lambda: '')
		self._instance.signals.listen('maniaplanet:podium_start', self._podium_start)

		# Fully update list + database.
		await self.update_list(full_update=True)

		# Get current and next map.
		self._current_map, self._next_map = await asyncio.gather(
			self.handle_map_change(await self._instance.gbx('GetCurrentMapInfo')),
			self.handle_map_change(await self._instance.gbx('GetNextMapInfo')),
)
		self._previous_map = None

[docs]	async def handle_map_change(self, info):
		"""
		This will be called from the glue that creates the signal 'maniaplanet:map_begin' or 'map_end'.

		:param info: Mapinfo in dict.
		:return: Map instance.
		:rtype: pyplanet.apps.core.maniaplanet.models.map.Map
		"""
		# Try to retrieve the MX-id from the filename.
		mx_id = self._extract_mx_id(info['FileName'])

		# Get or create.
		map_info = await Map.get_or_create_from_info(
			uid=info['UId'], name=info['Name'], author_login=info['Author'], file=info['FileName'],
			environment=info['Environnement'], map_type=info['MapType'], map_style=info['MapStyle'],
			num_laps=info['NbLaps'], num_checkpoints=info['NbCheckpoints'], time_author=info['AuthorTime'],
			time_bronze=info['BronzeTime'], time_silver=info['SilverTime'], time_gold=info['GoldTime'],
			price=info['CopperPrice'], mx_id=mx_id,
)
		self._previous_map = self._current_map
		self._current_map = map_info
		return map_info

	async def handle_playlist_change(self, source, **kwargs):
		pass
		# if source and source[2]:
		# 	return await self.update_list(full_update=True)

	def _extract_mx_id(self, file_name):
		"""
		Try to extract the MX-id from a filename.

		:param file_name: File name from Dedicated.
		:type file_name: str
		:return: String or None
		"""
		matches = re.findall(self._mx_id_regex, file_name)
		if not matches or len(matches) != 1 or len(matches[0]) != 2:
			return None
		return matches[0][1]

	async def _podium_start(self, **kwargs):
		"""
		Handle start of podium to reset ta limit if extended.

		:param kwargs:
		:return:
		"""
		# Set back the timer if time has been extended.
		if self._is_extended and self._original_ta:
			mode_settings = await self._instance.mode_manager.get_settings()
			if 'S_TimeLimit' not in mode_settings:
				return

			mode_settings['S_TimeLimit'] = self._original_ta
			await self._instance.mode_manager.update_settings(mode_settings)

			self._is_extended = False
			self._original_ta = None

	async def update_list(self, full_update=False, detach_fks=True):
		raw_list = await self._instance.gbx('GetMapList', -1, 0)
		updated = list()

		if full_update:
			# Query all existing entries from database.
			maps = list(await Map.execute(
				Map.select().where(Map.uid << [m['UId'] for m in raw_list])
))

			db_uids = [m.uid for m in maps]
			diff = [x for x in raw_list if x['UId'] not in db_uids]

			# Insert all missing maps into the DB.
			rows = list()
			for details in diff:
				mx_id = self._extract_mx_id(details['FileName'])

				# HACK: Due to a limited map name length of 150 chars, we want to strip it to the maximum possible.
				# This is a temporary fix and should be better handled in the future.
				name = details['Name']
				if len(name) > 150:
					name = name[:150]
					logging.getLogger(__name__).warning('Map name is very long, truncating to 150 chars.')

				rows.append(dict(
					uid=details['UId'], file=details['FileName'], name=name, author_login=details['Author'],
					environment=details['Environnement'], time_gold=details['GoldTime'], price=details['CopperPrice'],
					map_type=details['MapType'], map_style=details['MapStyle'], mx_id=mx_id
))

			if len(rows) > 0:
				await Map.execute(Map.insert_many(rows))
				maps += list(await Map.execute(
					Map.select().where(Map.uid << [m['uid'] for m in rows])
))

			async with self.lock:
				self._maps = set(maps)

			# Reload locals for all maps.
			# TODO: Find better way to remove this and handle it on the folders way.
			coroutines = list()
			if 'local_records' in self._instance.apps.apps:
				if detach_fks:
					asyncio.ensure_future(self._instance.apps.apps['local_records'].load_map_locals())
				else:
					coroutines.append(self._instance.apps.apps['local_records'].load_map_locals())

			# Reload karma for all maps.
			if 'karma' in self._instance.apps.apps:
				if detach_fks:
					asyncio.ensure_future(self._instance.apps.apps['karma'].load_map_votes())
				else:
					coroutines.append(self._instance.apps.apps['karma'].load_map_votes())

			if coroutines:
				await asyncio.gather(*coroutines)
		else:
			# Only update/insert the changed bits, (not checking for removed maps!!).
			async with self.lock:
				for details in raw_list:
					if not any(m.uid == details['UId'] for m in self._maps):
						# Detect any MX-id from the filename.
						mx_id = self._extract_mx_id(details['FileName'])

						# Map not yet in self._maps. Add it.
						map_instance = await Map.get_or_create_from_info(
							details['UId'], details['FileName'], details['Name'], details['Author'],
							environment=details['Environnement'], time_gold=details['GoldTime'],
							price=details['CopperPrice'], map_type=details['MapType'], map_style=details['MapStyle'],
							mx_id=mx_id,
)
						self._maps.add(map_instance)
						updated.append(map_instance)
		return updated

[docs]	async def get_map(self, uid=None):
		"""
		Get map instance by uid.

		:param uid: By uid (pk).
		:return: Player or exception if not found
		"""
		try:
			return await Map.get_by_uid(uid)
		except DoesNotExist:
			raise MapNotFound('Map not found.')

[docs]	async def get_map_by_index(self, index):
		"""
		Get map instance by index id (primary key).

		:param index: Primary key index.
		:return: Map instance or raise exception.
		"""
		try:
			return await Map.get(id=index)
		except DoesNotExist:
			raise MapNotFound('Map not found.')

	@property
	def next_map(self):
		"""
		The next scheduled map.

		:rtype: pyplanet.apps.core.maniaplanet.models.Map
		"""
		return self._next_map

[docs]	async def set_next_map(self, map):
		"""
		Set the next map. This will prepare the manager to set the next map and will communicate the next map to the
		dedicated server.

		The Map parameter can be a map instance or the UID of the map.

		:param map: Map instance or UID string.
		:type map: pyplanet.apps.core.maniaplanet.models.Map, str
		"""
		if isinstance(map, str):
			map = await self.get_map(map)
		if not isinstance(map, Map):
			raise Exception('When setting the map, you should give an Map instance!')
		if map.file:
			await self._instance.gbx('ChooseNextMap', map.file)
		else:
			await self._instance.gbx('SetNextMapIdent', map.uid)
		self._next_map = map

	@property
	def current_map(self):
		"""
		The current map, database model instance.

		:rtype: pyplanet.apps.core.maniaplanet.models.Map
		"""
		return self._current_map

	@property
	def previous_map(self):
		"""
		The previously played map, or None if not known!

		:rtype: pyplanet.apps.core.maniaplanet.models.Map
		"""
		return self._previous_map

	@property
	def maps(self):
		"""
		Get the maps that are currently loaded on the server. The list should contain model instances of the currently
		loaded matchsettings. This list should be up-to-date.

		:rtype: list
		"""
		return self._maps

[docs]	async def set_current_map(self, map):
		"""
		Set the current map and jump to it.

		:param map: Map instance or uid.
		"""
		if isinstance(map, str):
			map = await self.get_map(map)
		if not isinstance(map, Map):
			raise Exception('When setting the map, you should give an Map instance!')

		await self._instance.gbx('JumpToMapIdent', map.uid)
		self._next_map = map

[docs]	def playlist_has_map(self, uid):
		"""
		Check if our current playlist has a map with the UID given.

		:param uid: UID String
		:return: Boolean, True if it's in our current playlist (match settings in our session).
		"""
		for map_instance in self.maps:
			if map_instance.uid == uid:
				return True
		return False

[docs]	async def add_map(self, filename, insert=True, save_matchsettings=True):
		"""
		Add or insert map to current online playlist.

		:param filename: Load from filename relative to the 'Maps' directory on the dedicated host server.
		:param insert: Insert after the current map, this will make it play directly after the current map. True by default.
		:param save_matchsettings: Save match settings as well.
		:type filename: str
		:type insert: bool
		:type save_matchsettings: bool
		:raise: pyplanet.contrib.map.exceptions.MapIncompatible
		:raise: pyplanet.contrib.map.exceptions.MapException
		"""
		gbx_method = 'InsertMap' if insert else 'AddMap'

		try:
			result = await self._instance.gbx(gbx_method, filename)
		except Fault as e:
			if 'unknown' in e.faultString:
				raise MapNotFound('Map is not found on the server.')
			elif 'already' in e.faultString:
				raise MapException('Map already added to server.')
			raise MapException(e.faultString)

		# Try to save match settings.
		try:
			if save_matchsettings:
				await self.save_matchsettings()
		except Exception as e:
			handle_exception(e, __name__, 'add_map', extra_data={'EXTRAHOOK': 'Map Insert bug, see #306'})

		return result

[docs]	async def upload_map(self, fh, filename, insert=True, overwrite=False):
		"""
		Upload and add/insert the map to the current online playlist.

		:param fh: File handler, bytesio object or any readable context.
		:param filename: The filename when saving on the server. Must include the map.gbx! Relative to 'Maps' folder.
		:param insert: Insert after the current map, this will make it play directly after the current map. True by default.
		:param overwrite: Overwrite current file if exists? Default False.
		:type filename: str
		:type insert: bool
		:type overwrite: bool
		:raise: pyplanet.contrib.map.exceptions.MapIncompatible
		:raise: pyplanet.contrib.map.exceptions.MapException
		:raise: pyplanet.core.storage.exceptions.StorageException
		"""
		exists = await self._instance.storage.driver.exists(filename)
		if exists and not overwrite:
			raise MapException('Map with filename already located on server!')
		if not exists:
			await self._instance.storage.driver.touch('{}{}'.format(self._instance.storage.MAP_FOLDER, filename))

		async with self._instance.storage.open_map(filename, 'wb+') as fw:
			await fw.write(fh.read(-1))

		return await self.add_map(filename, insert=insert)

[docs]	async def remove_map(self, map, delete_file=False):
		"""
		Remove and optionally delete file from server and playlist.

		:param map: Map instance or filename in string.
		:param delete_file: Boolean to decide if we are going to remove the file from the server too. Defaults to False.
		:type delete_file: bool
		:raise: pyplanet.contrib.map.exceptions.MapException
		:raise: pyplanet.core.storage.exceptions.StorageException
		"""
		if isinstance(map, Map):
			map = map.file
		if not isinstance(map, str):
			raise ValueError('Map must be instance or string uid!')

		try:
			success = await self._instance.gbx('RemoveMap', map)
			if success:
				the_map = None
				for m in self._maps:
					if m.file == map:
						the_map = m
						break
				if the_map:
					self._maps.remove(the_map)
		except Fault as e:
			if 'unknown' in e.faultString:
				raise MapNotFound('Dedicated can\'t find map. Already removed?')
			raise MapException('Error when removing map from playlist: {}'.format(e.faultString))

		# Try to save match settings.
		try:
			await self.save_matchsettings()
		except:
			pass

		# Delete the actual file.
		if delete_file:
			try:
				await self._instance.storage.remove_map(map)
			except:
				raise MapException('Can\'t delete map file after removing from playlist.')

	async def _override_timelimit(self, filename):
		"""
		Called to overwrite S_TimeLimit in MatchSettings file if the current map is extended
		
		:param filename: Give the filename of the matchsettings.
		"""
		if self._is_extended and self._original_ta:
			try:
				async with self._instance.storage.open(os.path.join(self._instance.game.server_map_dir, filename), 'r+') as f:
					content = await f.readlines()
					for i in range(len(content)):
						if 'S_TimeLimit' in content[i]:
							content[i] = re.sub('value="(.+?)"', 'value="{}"'.format(self._original_ta), content[i])
							await f.seek(0)
							await f.write(''.join(content))
							await f.truncate()
							break
			except:
				logging.getLogger(__name__).warning('Can\'t update matchsettings with original time limit to \'{}\'!'.format(filename))

[docs]	async def save_matchsettings(self, filename=None):
		"""
		Save the current playlist and configuration to the matchsettings file.

		:param filename: Give the filename of the matchsettings, Leave empty to use the current loaded and configured one.
		:type filename: str
		:raise: pyplanet.contrib.map.exceptions.MapException
		:raise: pyplanet.core.storage.exceptions.StorageException
		"""
		setting = settings.MAP_MATCHSETTINGS
		if isinstance(setting, dict) and self._instance.process_name in setting:
			setting = setting[self._instance.process_name]
		if not isinstance(setting, str):
			setting = None

		if not filename and not setting:
			raise ImproperlyConfigured(
				'The setting \'MAP_MATCHSETTINGS\' is not configured for this server! We can\'t save the Match Settings!'
)
		if not filename:
			filename = 'MatchSettings/{}'.format(
				setting.format(server_login=self._instance.game.server_player_login)
)

		try:
			await self._instance.gbx('SaveMatchSettings', filename)
			await self._override_timelimit(filename)
		except Exception as e:
			logging.exception(e)
			raise MapException('Can\'t save matchsettings to \'{}\'!'.format(filename)) from e

[docs]	async def load_matchsettings(self, filename):
		"""
		Load Match Settings file and insert it into the current map playlist.

		:param filename: File to load, relative to Maps folder.
		:return: Boolean if loaded.
		"""
		try:
			if not await self._instance.storage.driver.exists(
				os.path.join(self._instance.storage.MAP_FOLDER, filename)
):
				raise MapException('Can\'t find match settings file. Does it exist?')
			else:
				await self._instance.gbx('LoadMatchSettings', filename)
		except Exception as e:
			logging.warning('Can\'t load match settings!')
			raise MapException('Can\'t load matchsettings according the dedicated server, tried loading from \'{}\'!'.format(filename)) from e

[docs]	async def extend_ta(self, extend_with=None):
		"""
		Extend time limit of the current map.
		Extend with given seconds, or double the original TA timer if None is given.

		:param extend_with: Extend with the given seconds, or None for adding the original TA limit to the current limit(double)
		:type extend_with: int
		:return:
		"""
		mode_settings = await self._instance.mode_manager.get_settings()
		if 'S_TimeLimit' not in mode_settings:
			raise ModeIncompatible('Current mode doesn\'t support the extend TA method. Not Time Attack?')

		temp_mode_settings = mode_settings.copy()
		original_ta = self._original_ta or temp_mode_settings['S_TimeLimit']

		if not extend_with:
			extend_with = original_ta
		if extend_with > 2000000000:
			extend_with = 2000000000

		temp_mode_settings['S_TimeLimit'] += abs(extend_with)
		if temp_mode_settings['S_TimeLimit'] > 2000000000:
			temp_mode_settings['S_TimeLimit'] = 2000000000

		if not self._is_extended or not self._original_ta:
			self._original_ta = mode_settings['S_TimeLimit']
		self._is_extended = True

		await self._instance.mode_manager.update_settings(temp_mode_settings)
		return extend_with

 pyplanet.contrib.mode.manager

 Source code for pyplanet.contrib.mode.manager

import logging

from pyplanet.contrib import CoreContrib
from pyplanet.contrib.mode.signals import script_mode_changed

logger = logging.getLogger(__name__)

[docs]class ModeManager(CoreContrib):
	"""
	Mode Manager manges the script, script settings and the mode UI settings of the current game mode.

	.. warning::

		Don't initiate this class yourself. Use ``instance.mode_manager`` for an static instance.

	"""
	def __init__(self, instance):
		"""
		Initiate, should only be done from the core instance.

		:param instance: Instance.
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance

		self._current_script = None
		self._next_script = None
		self._current_full_script = None
		self._next_full_script = None

		self._next_settings_update = dict()
		self._next_variables_update = dict()

[docs]	async def on_start(self):
		"""
		Handle startup, just before the apps will start. We will make sure we are ready to get requests for permissions.
		"""
		self._current_script = await self.get_current_script(refresh=True)

		# Listeners.
		self._instance.signals.listen('maniaplanet:server_start', self._on_change)

	async def _on_change(self, *args, **kwargs):
		# Making sure we set the settings + variables.
		if len(self._next_settings_update.keys()) > 0:
			logger.debug('Setting mode settings right now!')
			try:
				await self.update_settings(self._next_settings_update)
			except Exception as e:
				logging.error('Can\'t set the script mode settings! Error: {}'.format(str(e)))
			self._next_settings_update = dict()
		if len(self._next_variables_update.keys()) > 0:
			logger.debug('Setting mode variables right now!')
			try:
				await self.update_variables(self._next_variables_update)
			except Exception as e:
				logging.error('Can\'t set the script mode variables! Error: {}'.format(str(e)))
			self._next_variables_update = dict()

		# Make sure we send to the signal when mode is been changed.
		if self._current_script != self._next_script:
			await script_mode_changed.send_robust({
				'unloaded_script': self._current_script, 'loaded_script': self._next_script
			})

		await self.get_current_script(refresh=True)

[docs]	async def get_current_script(self, refresh=False):
		"""
		Get the current script name.

		:param refresh: Refresh from server.
		"""
		if refresh or not self._current_script:
			payload = await self._instance.gbx('GetScriptName')
			current_value = payload['CurrentValue'].partition('.')[0]
			if '\\' in current_value:
				current_value = current_value.rpartition('\\')[2]
			self._current_script = current_value
			self._current_full_script = payload['CurrentValue']

			if 'NextValue' in payload:
				next_value = payload['NextValue'].partition('.')[0]
				if '\\' in next_value:
					next_value = next_value.rpartition('\\')[2]
				self._next_script = next_value
				self._next_full_script = payload['NextValue']

		return self._current_script

[docs]	async def get_next_script(self, refresh=False):
		"""
		Get the next script name.

		:param refresh: Refresh from server.
		"""
		await self.get_current_script(refresh=refresh)
		return self._next_script

[docs]	async def get_current_full_script(self, refresh=False):
		"""
		Get the current full script name.

		:param refresh: Refresh from server.
		"""
		if refresh or not self._current_full_script:
			await self.get_current_script(True)

		return self._current_full_script

[docs]	async def get_next_full_script(self, refresh=False):
		"""
		Get the next full script name.

		:param refresh: Refresh from server.
		"""
		if refresh or not self._next_full_script:
			await self.get_current_script(True)

		return self._next_full_script

[docs]	async def get_current_script_info(self):
		"""
		Get the script info as a structure containing: Name, CompatibleTypes, Description, Version and the settings available.
		"""
		return await self._instance.gbx('GetModeScriptInfo')

[docs]	async def set_next_script(self, name):
		"""
		Set the next played script name (after map restart/skip).

		:param name: Name
		"""
		await self._instance.gbx('SetScriptName', name)
		name = name.partition('.')[0]
		if '\\' in name:
			name = name.rpartition('\\')[2]
		self._next_script = name

[docs]	async def get_settings(self):
		"""
		Get the current mode settings as a dictionary.
		"""
		return await self._instance.gbx('GetModeScriptSettings')

[docs]	async def update_settings(self, update_dict):
		"""
		Update the current settings, merges current settings with the provided settings. Replaces by the keys you give
		if the data already exists.

		:param update_dict: The dictionary with the partial updated keys and values.
		"""
		current_settings = await self.get_settings()
		current_settings.update(update_dict)
		await self._instance.gbx('SetModeScriptSettings', current_settings)

[docs]	async def update_next_settings(self, update_dict):
		"""
		Queue setting changes for the next script (that will be active after restart).

		:param update_dict: The dictionary with the partial updated keys and values.
		"""
		if not isinstance(self._next_settings_update, dict):
			self._next_settings_update = dict()
		self._next_settings_update.update(update_dict)

[docs]	async def get_variables(self):
		"""
		Get the mode script variables.
		"""
		return await self._instance.gbx('GetModeScriptVariables')

[docs]	async def update_variables(self, update_dict):
		"""
		Update the current variables, merges current vars with the provided vars. Replaces by the keys you give
		if the data already exists.

		:param update_dict: The dictionary with the partial updated keys and values.
		"""
		variables = await self.get_variables()
		variables.update(update_dict)
		await self._instance.gbx('SetModeScriptVariables', variables)

[docs]	async def update_next_variables(self, update_dict):
		"""
		Queue variable changes for the next script (that will be active after restart).

		:param update_dict: The dictionary with the partial updated keys and values.
		"""
		if not isinstance(self._next_variables_update, dict):
			self._next_variables_update = dict()
		self._next_variables_update.update(update_dict)

 pyplanet.contrib.permission.manager

 Source code for pyplanet.contrib.permission.manager

from peewee import DoesNotExist

from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.apps.core.pyplanet.models import Permission
from pyplanet.contrib import CoreContrib

[docs]class PermissionManager(CoreContrib):
	"""
	Permission Manager manges the permissions of all apps and players.
	
	.. todo::
	
		Write introduction.
		
	.. warning::
	
		Don't initiate this class yourself.
	"""
	def __init__(self, instance):
		"""
		Initiate, should only be done from the core instance.
		
		:param instance: Instance.
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance

[docs]	async def on_start(self):
		"""
		Handle startup, just before the apps will start. We will make sure we are ready to get requests for permissions.
		"""
		pass

[docs]	async def has_permission(self, player, permission):
		"""
		Check if the player has the right permission.
		
		:param player: player instance.
		:param permission: permission name.
		:return: boolean if player is allowed.
		"""
		if isinstance(permission, str):
			perm_namespace, _, perm_name = permission.rpartition(':')
			permission = await self.get_perm(name=perm_name, namespace=perm_namespace)
		if isinstance(player, str):
			player = await self._instance.player_manager.get_player(login=player)
		if not isinstance(permission, Permission):
			raise Exception('Permission should be a string or permission object!')
		if not isinstance(player, Player):
			raise Exception('Player should be a string or player object!')
		return player.level >= permission.min_level

[docs]	async def get_perm(self, namespace, name):
		"""
		Get permission by namespace and name.
		
		:param namespace: Namespace of the permission
		:param name: Name of the permission.
		:type name: str
		:type namespace: str
		"""
		return await Permission.get(namespace=namespace, name=name)

[docs]	async def register(self, name, description='', app=None, min_level=1, namespace=None):
		"""
		Register a new permission.
		
		:param name: Name of permission
		:param description: Description in english.
		:param app: App instance to retrieve the label.
		:param min_level: Minimum level required.
		:param namespace: Namespace, only for core usage!
		:return: Permission instance.
		"""
		if not namespace and app:
			namespace = app.label
		if not namespace:
			raise Exception('Namespace is required. You should give your app instance with app=app instead!')

		try:
			perm = await self.get_perm(namespace=namespace, name=name)

			# TODO: Implement overrides on min_level here.
			if perm.min_level != min_level:
				perm.min_level = min_level
				await perm.save()

		except DoesNotExist:
			perm = Permission(namespace=namespace, name=name, description=description, min_level=min_level)
			await perm.save()
		return perm

 pyplanet.contrib.player.exceptions

 Source code for pyplanet.contrib.player.exceptions

"""
Exceptions for Map Manager.
"""

[docs]class PlayerNotFound(Exception):
	"""Player not found"""

 pyplanet.contrib.player.manager

 Source code for pyplanet.contrib.player.manager

import asyncio
import datetime
import logging

from peewee import DoesNotExist

from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.conf import settings
from pyplanet.contrib import CoreContrib
from pyplanet.contrib.player.exceptions import PlayerNotFound
from pyplanet.contrib.setting.core_settings import performance_mode
from pyplanet.core.exceptions import ImproperlyConfigured
from pyplanet.core.signals import pyplanet_performance_mode_begin, pyplanet_performance_mode_end
from pyplanet.core.storage.exceptions import StorageException
from pyplanet.utils.zone import parse_path

logger = logging.getLogger(__name__)

[docs]class PlayerManager(CoreContrib):
	"""
	Player Manager.

	You can access this class in your app with:

	.. code-block:: python

		self.instance.player_manager

	With the manager you can get several useful information about the players on the server. See all the properties and methods
	below for more information.

	.. warning::

		Don't initiate this class yourself.
	"""
	def __init__(self, instance):
		"""
		Initiate, should only be done from the core instance.

		:param instance: Instance.
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance
		self._performance_mode = False
		# self.lock = asyncio.Lock()

		# Online contains all currently online players.
		self._online = set()
		self._online_logins = set()

		# Counters.
		self._counter_lock = asyncio.Lock()
		self._total_count = 0
		self._players_count = 0
		self._spectators_count = 0

	@property
	def performance_mode(self):
		return self._performance_mode

	@performance_mode.setter
	def performance_mode(self, new_value):
		if self._performance_mode != new_value:
			if new_value:
				asyncio.ensure_future(
					pyplanet_performance_mode_begin.send_robust(source=dict(
						old_value=self._performance_mode, new_value=new_value
))
)
			else:
				asyncio.ensure_future(
					pyplanet_performance_mode_end.send_robust(source=dict(
						old_value=self._performance_mode, new_value=new_value
))
)
		self._performance_mode = new_value

[docs]	async def on_start(self):
		"""
		Handle startup, just before the apps will start. We will throw connects for the players so we know that the
		current playing players are also initiated correctly!
		"""
		player_list = await self._instance.gbx('GetPlayerList', -1, 0)
		await asyncio.gather(*[self.handle_connect(player['Login']) for player in player_list])

		# Load and activate blacklist.
		try:
			await self.load_blacklist()
		except:
			pass # Ignore any exception thrown

		self._instance.signals.listen('maniaplanet:loading_map_end', self.map_loaded)

[docs]	async def map_loaded(self, *args, **kwargs):
		"""
		Reindex the current number of players and spectators.

		:param args:
		:param kwargs:
		:return:
		"""
		# Update player and spectator counters.
		player_list = await self._instance.gbx('GetPlayerList', -1, 0)

		total = 0
		specs = 0
		players = 0

		for player in player_list:
			if self._instance.game.server_is_dedicated and self._instance.game.server_player_login == player['Login']:
				continue

			try:
				info = await self._instance.gbx('GetDetailedPlayerInfo', player['Login'])
			except:
				# Player has left during this time.
				continue

			total += 1
			if info['IsSpectator']:
				specs += 1
			else:
				players += 1

		async with self._counter_lock:
			self._total_count = total
			self._spectators_count = specs
			self._players_count = players

[docs]	async def handle_connect(self, login):
		"""
		Handle a connection of a player, this call is being called inside of the Glue of the callbacks.

		:param login: Login, received from dedicated.
		:return: Database Player instance.
		:rtype: pyplanet.apps.core.maniaplanet.models.Player
		"""
		# Ignore if it's the server itself.
		if self._instance.game.server_is_dedicated and self._instance.game.server_player_login == login:
			return

		try:
			info = await self._instance.gbx('GetDetailedPlayerInfo', login)
		except:
			# Most likely too late, did disconnect directly after connecting..
			# See #126
			return
		ip, _, port = info['IPAddress'].rpartition(':')
		is_owner = login in settings.OWNERS[self._instance.process_name]

		try:
			player = await Player.get_by_login(login)
			player.last_ip = ip
			player.last_seen = datetime.datetime.now()
			player.nickname = info['NickName']
			if is_owner:
				player.level = Player.LEVEL_MASTER
			await player.save()
		except DoesNotExist:
			# Get details of player from dedicated.
			player = await Player.create(
				login=login,
				nickname=info['NickName'],
				last_ip=ip,
				last_seen=datetime.datetime.now(),
				level=Player.LEVEL_MASTER if is_owner else Player.LEVEL_PLAYER,
)

		# Set the join time.
		player.flow.joined_at = datetime.datetime.now()

		# Update counter and state.
		async with self._counter_lock:
			player.flow.player_id = info['PlayerId']
			player.flow.team_id = info['TeamId']
			player.flow.is_spectator = bool(info['IsSpectator'])
			player.flow.is_player = not bool(info['IsSpectator'])
			player.flow.zone = parse_path(info['Path'])

			self._total_count += 1
			if player.flow.is_spectator:
				self._spectators_count += 1
			else:
				self._players_count += 1

		self._online.add(player)
		self._online_logins.add(login)
		self.performance_mode = len(self._online) >= await performance_mode.get_value()

		return player

	async def handle_info_change(self, player, is_spectator, is_temp_spectator, is_pure_spectator, target, team_id, **kwargs):
		if not player:
			return

		if player not in self._online:
			return

		async with self._counter_lock:
			if player.flow.is_spectator is True and not is_spectator:
				self._spectators_count -= 1
				self._players_count += 1

				await self._instance.signals.get_signal('maniaplanet:player_enter_player_slot').send_robust(dict(
					player=player,
), raw=True)
			elif player.flow.is_player is True and is_spectator:
				self._spectators_count += 1
				self._players_count -= 1

				await self._instance.signals.get_signal('maniaplanet:player_enter_spectator_slot').send_robust(dict(
					player=player,
), raw=True)

			# This is in case of desync happens. Not nice to fix, but currently one of the only options.
			if self._players_count < 0:
				self._players_count = 0
			if self._spectators_count < 0:
				self._spectators_count = 0
			if self._total_count < 0:
				self._total_count = 0

		# Update flow state.
		payload = kwargs.copy()
		payload.update(dict(
			is_spectator=is_spectator, is_temp_spectator=is_temp_spectator, is_pure_spectator=is_pure_spectator,
			target=target, team_id=team_id
))
		player.flow.update_state(**payload)

[docs]	async def handle_disconnect(self, login):
		"""
		Handle a disconnection of a player, this call is being called inside of the Glue of the callbacks.

		:param login: Login, received from dedicated.
		:return: Database Player instance.
		:rtype: pyplanet.apps.core.maniaplanet.models.Player
		"""
		try:
			player = await Player.get_by_login(login=login)
		except:
			return

		# Update counters.
		async with self._counter_lock:
			self._total_count -= 1
			if player.flow.is_player:
				self._players_count -= 1
			else:
				self._spectators_count -= 1

		if player in self._online:
			self._online.remove(player)
		if login in self._online_logins:
			self._online_logins.remove(login)

		# Calculate the number of seconds on the server and update the total time on server.
		if player.flow.joined_at:
			time_on_server = datetime.datetime.now() - player.flow.joined_at
			player.total_playtime += int(time_on_server.total_seconds())

		try:
			del Player.CACHE[login]
		except:
			pass
		player.last_seen = datetime.datetime.now()
		await player.save()

		# Clear player/spec state.
		player.flow.reset_state()

		# Update performance mode status.
		self.performance_mode = self._total_count >= await performance_mode.get_value()

		return player

[docs]	async def get_player(self, login=None, pk=None, lock=True):
		"""
		Get player by login or primary key.

		:param login: Login.
		:param pk: Primary Key identifier.
		:param lock: Lock for a sec when receiving.
		:return: Player or exception if not found
		:rtype: pyplanet.apps.core.maniaplanet.models.Player
		"""
		try:
			if login:
				return await Player.get_by_login(login)
			elif pk:
				return await Player.get(pk=pk)
			else:
				raise PlayerNotFound('Player not found.')
		except DoesNotExist:
			if lock:
				await asyncio.sleep(4)
				return await self.get_player(login=login, pk=pk, lock=False)
			else:
				raise PlayerNotFound('Player not found.')

[docs]	async def get_player_by_id(self, identifier):
		"""
		Get player object by ID.

		:param identifier: Identifier.
		:return: Player object or None
		"""
		for player in self._online:
			if player.flow.player_id == identifier:
				return player
		return None

[docs]	async def save_blacklist(self, filename=None):
		"""
		Save the current blacklisted players to file given or fetch from config.

		:param filename: Give the filename of the blacklist, Leave empty to use the current loaded and configured one.
		:type filename: str
		:raise: pyplanet.core.exceptions.ImproperlyConfigured
		:raise: pyplanet.core.storage.exceptions.StorageException
		"""
		setting = settings.BLACKLIST_FILE
		if isinstance(setting, dict) and self._instance.process_name in setting:
			setting = setting[self._instance.process_name]
		if not isinstance(setting, str):
			setting = None

		if not filename and not setting:
			raise ImproperlyConfigured(
				'The setting \'BLACKLIST_FILE\' is not configured for this server! We can\'t save the Blacklist!'
)
		if not filename:
			filename = setting.format(server_login=self._instance.game.server_player_login)
		
		try:
			await self._instance.gbx('SaveBlackList', filename)
		except Exception as e:
			logging.exception(e)
			raise StorageException('Can\'t save blacklist file to \'{}\'!'.format(filename)) from e

[docs]	async def save_guestlist(self, filename=None):
		"""
		Save the current guestlisted players to file given or fetch from config.

		:param filename: Give the filename of the guestlist, Leave empty to use the current loaded and configured one.
		:type filename: str
		:raise: pyplanet.core.exceptions.ImproperlyConfigured
		:raise: pyplanet.core.storage.exceptions.StorageException
		"""
		setting = settings.GUESTLIST_FILE
		if isinstance(setting, dict) and self._instance.process_name in setting:
			setting = setting[self._instance.process_name]
		if not isinstance(setting, str):
			setting = None

		if not filename and not setting:
			raise ImproperlyConfigured(
				'The setting \'GUESTLIST_FILE\' is not configured for this server! We can\'t save the Guestlist!'
)
		if not filename:
			filename = setting.format(server_login=self._instance.game.server_player_login)

		try:
			await self._instance.gbx('SaveGuestList', filename)
		except Exception as e:
			logging.exception(e)
			raise StorageException('Can\'t save guestlist file to \'{}\'!'.format(filename)) from e

[docs]	async def load_guestlist(self, filename=None):
		"""
		Load guestlist file.

		:param filename: File to load or will get from settings.
		:raise: pyplanet.core.exceptions.ImproperlyConfigured
		:raise: pyplanet.core.storage.exceptions.StorageException
		:return: Boolean if loaded.
		"""
		setting = settings.GUESTLIST_FILE
		if isinstance(setting, dict) and self._instance.process_name in setting:
			setting = setting[self._instance.process_name]
		if not isinstance(setting, str):
			setting = None

		if not filename and not setting:
			raise ImproperlyConfigured(
				'The setting \'GUESTLIST_FILE\' is not configured for this server! We can\'t load the Guestlist!'
)
		if not filename:
			filename = setting.format(server_login=self._instance.game.server_player_login)

		try:
			self._instance.gbx('LoadGuestList', filename)
		except Exception as e:
			logging.exception(e)
			raise StorageException('Can\'t load guestlist according the dedicated server, tried loading from \'{}\'!'.format(
				filename
)) from e

[docs]	async def load_blacklist(self, filename=None):
		"""
		Load blacklist file.

		:param filename: File to load or will get from settings.
		:raise: pyplanet.core.exceptions.ImproperlyConfigured
		:raise: pyplanet.core.storage.exceptions.StorageException
		:return: Boolean if loaded.
		"""
		setting = settings.BLACKLIST_FILE
		if isinstance(setting, dict) and self._instance.process_name in setting:
			setting = setting[self._instance.process_name]
		if not isinstance(setting, str):
			setting = None

		if not filename and not setting:
			raise ImproperlyConfigured(
				'The setting \'BLACKLIST_FILE\' is not configured for this server! We can\'t load the Blacklist!'
)
		if not filename:
			filename = setting.format(server_login=self._instance.game.server_player_login)

		try:
			self._instance.gbx('LoadBlackList', filename)
		except Exception as e:
			logging.exception(e)
			raise StorageException('Can\'t load blacklist according the dedicated server, tried loading from \'{}\'!'.format(
				filename
)) from e

	@property
	def online(self):
		"""
		Online player list.
		"""
		return self._online.copy()

	@property
	def online_logins(self):
		"""
		Online player logins list.
		"""
		return self._online_logins.copy()

	@property
	def count_all(self):
		"""
		Get all player counts (players + spectators).
		"""
		return self._total_count

	@property
	def count_players(self):
		"""
		Get number of playing players.
		"""
		return self._players_count

	@property
	def count_spectators(self):
		"""
		Get number of spectating players.
		"""
		return self._spectators_count

	@property
	def max_players(self):
		"""
		Get maximum number of players.
		"""
		return self._instance.game.server_max_players

	@property
	def max_spectators(self):
		"""
		Get maximum number of spectators.
		"""
		return self._instance.game.server_max_specs

 pyplanet.contrib.setting.exceptions

 Source code for pyplanet.contrib.setting.exceptions

"""
Exceptions for Setting Manager.
"""

[docs]class SettingException(Exception):
	"""Abstract setting exception."""

[docs]class SerializationException(SettingException):
	"""Setting value (un)serialization problems"""

[docs]class TypeUnknownException(SettingException):
	"""The type is unknown."""

 pyplanet.contrib.setting.manager

 Source code for pyplanet.contrib.setting.manager

import asyncio

from pyplanet.apps import AppConfig
from pyplanet.contrib import CoreContrib
from pyplanet.contrib.setting.core_settings import performance_mode
from pyplanet.contrib.setting.exceptions import SettingException

class _BaseSettingManager:
	def __init__(self, instance):
		"""
		Initiate, should only be done from the core instance.

		:param instance: Instance.
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance
		self._settings = list()
		self._app = None

	async def register(self, *settings):
		"""
		Register your setting(s). This will create default values when the setting has not yet been inited before.

		:param settings: Setting(s) given.
		:type settings: pyplanet.contrib.setting.setting._Setting
		"""
		# Check if setting has a value, then fetch it, if not, create new entry with default or none.
		await asyncio.gather(*[s.initiate_setting() for s in settings])

		# Register the setting.
		self._settings.extend(settings)

[docs]class GlobalSettingManager(_BaseSettingManager, CoreContrib):
	"""
	Global Setting manager is available at the instance. ``instance.setting_manager``.

	.. warning::

		Don't use the setting_manager for registering app settings! Use the app setting manager instead!

		Don't initiate this class yourself.

	"""

[docs]	def __init__(self, instance):
		super().__init__(instance)
		self.app_managers = dict()

	async def on_start(self):
		# Register core global settings.
		await self.register(performance_mode)

[docs]	def create_app_manager(self, app_config):
		"""
		Create app setting manager.

		:param app_config: App Config instance.
		:type app_config: pyplanet.apps.config.AppConfig
		:return: Setting Manager
		:rtype: pyplanet.contrib.setting.manager.AppSettingManager
		"""
		if app_config.label not in self.app_managers:
			self.app_managers[app_config.label] = AppSettingManager(self._instance, app_config)
		return self.app_managers[app_config.label]

[docs]	def get_app_manager(self, app):
		"""
		Get the app manager for a specified app label or config instance.

		:param app: App label in string or the app config instance.
		:return: App manager instance.
		:rtype: pyplanet.contrib.setting.manager.AppSettingManager
		"""
		if isinstance(app, AppConfig):
			app = app.label
		return self.app_managers[app]

	@property
	def recursive_settings(self):
		"""
		Retrieve all settings, of all submanagers.
		"""
		for setting in self._settings:
			yield setting
		for app, manager in self.app_managers.items():
			for setting in manager._settings:
				yield setting

[docs]	async def get_setting(self, app_label, key, prefetch_values=True):
		"""
		Get setting by key and optionally fetch the value if not yet fetched.

		:param app_label: Namespace (mostly app label).
		:param key: Key string
		:param prefetch_values: Prefetch the values if not yet fetched?
		:return: Setting instance.
		:raise: SettingException
		"""
		if app_label is None:
			setting = None
			for s in self._settings:
				if s.key == key:
					setting = s
					break

			if not setting:
				raise SettingException('Setting with key not found')

			if prefetch_values and setting._value[0] is False:
				await setting.get_value()
			return setting
		return await self.get_app_manager(app_label).get_setting(key, prefetch_values)

[docs]	async def get_apps(self, prefetch_values=True):
		"""
		Get all the app label + names for all the settings we can find in our registry.
		Returns a dict with label as key, and count + name as values.

		:param prefetch_values: Prefetch the values in this call. Defaults to True.
		:return: List with setting objects.
		"""
		apps = dict()
		if prefetch_values:
			await asyncio.gather(*[
				s.get_value(refresh=True) for s in self.recursive_settings
])

		for setting in self.recursive_settings:
			if setting.app_label not in apps:
				apps[setting.app_label] = dict(
					count=0,
					name=self._instance.apps.apps[setting.app_label].name,
					app=self._instance.apps.apps[setting.app_label],
					settings=list()
)
			apps[setting.app_label]['count'] += 1
			apps[setting.app_label]['settings'].append(setting)
		return apps

[docs]	async def get_categories(self, prefetch_values=True):
		"""
		Get all the categories we have registered.
		Returns a dict with label as key, and count + name as values.

		:param prefetch_values: Prefetch the values in this call. Defaults to True.
		:return: List with setting objects.
		"""
		cats = dict()
		if prefetch_values:
			await asyncio.gather(*[
				s.get_value(refresh=True) for s in self.recursive_settings
])

		for setting in self.recursive_settings:
			if setting.category not in cats:
				cats[setting.category] = dict(
					count=0,
					name=setting.category,
					settings=list()
)
			cats[setting.category]['count'] += 1
			cats[setting.category]['settings'].append(setting)
		return cats

[docs]	async def get_all(self, prefetch_values=True):
		"""
		Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not recommended).

		:param prefetch_values: Prefetch the values in this call. Defaults to True.
		:return: List with setting objects.
		"""
		if prefetch_values:
			await asyncio.gather(*[
				s.get_value(refresh=True) for s in self.recursive_settings
])
		return self.recursive_settings

[docs]class AppSettingManager(_BaseSettingManager):
	"""
	The local app setting manager is the one you should use to register settings to inside of your app.

	You can use this manager like this:

	.. code-block:: python

		from pyplanet.contrib.setting import Setting

		async def on_start(self):
			await self.context.setting.register(
				Setting('feature_a', 'Enable feature A', Setting.CAT_FEATURES, type=bool, description='Enable feature A'),
				Setting('feature_b', 'Enable feature B', Setting.CAT_FEATURES, type=bool, description='Enable feature B'),
)

	For more information about the settings, categories, types, and all other options. Look at the ``Settings``
	documentation.

	.. warning::

		Don't initiate this class yourself.

	"""

	def __init__(self, instance, app):
		"""
		Initiate app setting manager.

		:param instance: Controller instance.
		:param app: App Config instance.
		:type instance: pyplanet.core.instance.Instance
		:type app: pyplanet.apps.config.AppConfig
		"""
		super().__init__(instance)
		self._app = app

[docs]	async def register(self, *settings):
		"""
		Register your setting(s). This will create default values when the setting has not yet been inited before.

		:param settings: Setting(s) given.
		:type settings: pyplanet.contrib.setting.setting._Setting
		"""
		# Set app label on all setting objects.
		for setting in settings:
			setting.app_label = self._app.label

		# Check if setting has a value, then fetch it, if not, create new entry with default or none.
		await asyncio.gather(*[s.initiate_setting() for s in settings])

		# Register the setting.
		self._settings.extend(settings)

[docs]	async def get_setting(self, key, prefetch_values=True):
		"""
		Get setting by key and optionally fetch the value if not yet fetched.

		:param key: Key string
		:param prefetch_values: Prefetch the values if not yet fetched?
		:return: Setting instance.
		:raise: SettingException
		"""
		setting = None
		for s in self._settings:
			if s.key == key:
				setting = s
				break

		if not setting:
			raise SettingException('Setting with key not found')

		if prefetch_values and setting._value[0] is False:
			await setting.get_value()
		return setting

[docs]	def get_categories(self):
		"""
		Get all the categories we have registered.
		Returns a dict with label as key, and count + name as values.
		"""
		cats = dict()
		for setting in self._settings:
			if setting.category not in cats:
				cats[setting.category] = dict(count=0)
			cats[setting.category]['count'] += 1
		return cats

[docs]	async def get_all(self, prefetch_values=True):
		"""
		Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not recommended).

		:param prefetch_values: Prefetch the values in this call. Defaults to True.
		:return: List with setting objects.
		"""
		if prefetch_values:
			await asyncio.gather(*[
				s.get_value(refresh=True) for s in self._settings
])
		return self._settings

 pyplanet.contrib.setting.setting

 Source code for pyplanet.contrib.setting.setting

import json
from asyncio import iscoroutinefunction

from pyplanet.apps.core.pyplanet.models.setting import Setting as SettingModel
from pyplanet.contrib.setting.exceptions import TypeUnknownException, SerializationException, SettingException

[docs]class Setting:
	"""
	The setting class is for defining a setting for the end-user.
	This setting can be changed with /settings and //settings.

	With this class you can define or manage your setting that is going to be public for all other apps and end-user.

	You can get notified of changes with the ``change_target`` in the init of this class. Point this to a method (async or sync)
	with the following params: ``old_value`` and ``new_value``.

	Example:

	.. code-block:: python

		my_setting = Setting(
			'dedimania_code', 'Dedimania Server Code', Setting.CAT_KEYS, type=str,
			description='The secret dedimania code. Get one at $lhttp://dedimania.net/tm2stats/?do=register',
			default=None
)

		my_other_setting = Setting(
			'sample_boolean', 'Booleans for the win!', Setting.CAT_BEHAVIOUR, type=bool, description='Example',
)

	"""

	CAT_GENERAL = 'General'
	CAT_KEYS = 'Keys'
	CAT_DESIGN = 'Design'
	CAT_POSITION = 'Position'
	CAT_BEHAVIOUR = 'Behaviour'
	CAT_FEATURES = 'Features'
	CAT_OTHER = 'Other'
	ALL_CATEGORIES = [CAT_GENERAL, CAT_DESIGN, CAT_POSITION, CAT_BEHAVIOUR, CAT_FEATURES, CAT_KEYS, CAT_OTHER]

[docs]	def __init__(
		self, key: str, name: str, category: str, type=str, description: str = None, choices=None, default=None,
		change_target=None
):
		"""
		Create setting with properties.

		:param key: Key of setting, this is mainly only used for the backend and for referencing the setting.
					You should keep this unique in your app!
		:param name: Name of the setting that will be displayed as a small label to the player.
		:param category: Category from Categories.*. Must be provided!
		:param type: Type of value to expect, use python types here. str by default.
		:param description: Description to provide help and instructions to the player.
		:param choices: List or tuple with choices, only when wanting to restrict values to selected options.
		:param default: Default value if not provided from database. This will be returned. Defaults to None.
		:param change_target: Target method to call when the setting value has been changed.
		"""
		if category not in self.ALL_CATEGORIES:
			raise SettingException('Invalid category. Must be an category in the Categories static class.')
		# Prepare property for app specific setting. Will be injected by the register command.
		self.app_label = None

		self.key = key
		self.name = name
		self.description = description
		self.category = category
		self.default = default
		self.type = type
		self.choices = choices
		self.change_target = change_target

		# Prepare the model instance here. This will be filled once it's fetched for the first time (or inited).
		self._instance = None
		self._value = (False, None)

[docs]	async def initiate_setting(self):
		"""
		Initiate database record for setting.
		"""
		return await SettingModel.get_or_create_from_info(
			key=self.key, app=self.app_label, category=self.category, name=self.name, description=self.description,
			value=None
)

[docs]	def unserialize_value(self, value):
		"""
		Unserialize the datastorage value to the python value, based on the type of the setting.

		:param value: Value from database.
		:return: Python value.
		:raise pyplanet.contrib.setting.exceptions.SerializationException: SerializationException
		"""
		if value is None:
			return self.default

		try:
			if self.type == str:
				return str(value)
			elif self.type == int:
				return int(value)
			elif self.type == float:
				return float(value)
			elif self.type == bool:
				return bool(value)
			elif self.type == list or self.type == set or self.type == dict:
				return json.loads(value)
			else:
				raise TypeUnknownException('The type \'{}\' is unknown!'.format(self.type))
		except TypeUnknownException:
			raise
		except Exception as e:
			raise SerializationException('Error with unserialization of the setting \'{}\''.format(str(self))) from e

[docs]	def serialize_value(self, value):
		"""
		Serialize the python value to the data store value, based on the type of the setting.

		:param value: Python Value.
		:return: Database Value
		"""
		# Always set to Null, so we get the default value back.
		if value is None:
			return value

		# Empty value, set the default.
		if value == '':
			return self.default

		if self.choices and value not in self.choices:
			raise SerializationException('Value given is not in the predefined choices!')

		try:
			if self.type == int:
				value = int(value)
			elif self.type == float:
				value = float(value)
			elif self.type == bool:
				if value == '1' or value == 1 or value == '0' or value == 0:
					value = bool(int(value))
		except:
			pass

		if type(value) != self.type:
			raise SerializationException(
				'Your given value is not of the type you specified! \'{}\' != \'{}\''.format(type(value), self.type)
)

		if self.type == list or self.type == set or self.type == dict:
			return json.dumps(value)
		if self.type == bool:
			return value
		return str(value)

	@property
	def type_name(self):
		"""
		Get the name of the specified type in string format, suited for displaying to end-user.

		:return: User friendly name of type.
		"""
		if self.type == str:
			return 'string'
		elif self.type == int:
			return 'integer'
		elif self.type == float:
			return 'float'
		elif self.type == bool:
			return 'boolean'
		elif self.type == list or self.type == set:
			return 'list'
		elif self.type == dict:
			return 'dict'
		else:
			return 'unknown'

[docs]	async def get_value(self, refresh=False):
		"""
		Get the value or the default value for the setting model.

		:param refresh: Force a refresh of the value.
		:return: Value in the desired type and unserialized from database/storage.
		:raise: NotFound / SerializationException
		"""
		if not self._value[0] or refresh is True:
			model = await self.get_model()
			self._value = (True, self.unserialize_value(model.value))
		return self._value[1]

[docs]	async def set_value(self, value):
		"""
		Set the value, this will serialize and save the setting to the data storage.

		:param value: Python value input.
		:raise: NotFound / SerializationException
		"""
		old_value = self._value[0] if self._value and len(self._value) > 0 else None

		model = await self.get_model()
		model.value = self.serialize_value(value)
		self._value = (True, model.value)
		await model.save()

		# Call the change target.
		if self.change_target and callable(self.change_target):
			if iscoroutinefunction(self.change_target):
				await self.change_target(old_value, model.value)
			else:
				self.change_target(old_value, model.value)

[docs]	async def clear(self):
		"""
		Clear the value in the data storage. This will set the value to None, and will return the default value on
		request of data.

		:raise: NotFound / SerializationException
		"""
		return await self.set_value(None)

[docs]	async def get_model(self):
		"""
		Get the model for the setting. This will return the model instance or raise an exception when not found.

		:return: Model instance
		:raise: NotFound
		"""
		return await SettingModel.get(key=self.key, app=self.app_label)

[docs]	def __str__(self):
		return self.name

 pyplanet.core.controller

 Source code for pyplanet.core.controller

"""
This file contains the static entry point to access the controller instance from anywhere without having a reference
to it and to prevent issues with circular imports.

Please import this from the ``pyplanet.core`` package instead!
"""

class _Controller:
	def __init__(self, *args, **kwargs):
		self.name = None
		self.__instance = None

	def prepare(self, name):
		from pyplanet.core.instance import Instance

		self.name = name
		self.__instance = Instance(name)
		return self

	@property
	def instance(self):
		"""
		Get active instance in current process.

		:return: Controller Instance
		:rtype: pyplanet.core.instance.Instance
		"""
		return self.__instance

Controller = _Controller()
"""
Controller access point to prevent circular imports. This is a lazy provided way to get the instance from anywhere!
"""

 pyplanet.core.exceptions

 Source code for pyplanet.core.exceptions

[docs]class ImproperlyConfigured(Exception):
	"""The configuration is not given or is invalid."""
	pass

[docs]class AppRegistryNotReady(Exception):
	"""The registry was not yet ready to invoke"""
	pass

[docs]class InvalidAppModule(Exception):
	"""The given app string is invalid or the app itself is misconfigured!"""

[docs]class TransportException(Exception):
	"""The XML-RPC tunnel got a transport error."""

[docs]class SignalException(Exception):
	"""Signal receiver thrown an exception!"""

[docs]class SignalGlueStop(Exception):
	"""Throw this exception inside of your glue method to stop executing the signal."""

 pyplanet.core.game

 Source code for pyplanet.core.game

[docs]class _Game:
	"""
	The game class holds information about the game itself and the server. The properties can be virtually overriden
	to be able to proxy to new/old syntaxes. This way we can provide a read-only data structure and still
	maintain the same structure if any of the third party API changes.

	This class is available from the instance with `instance.game`.

	**Most variables seem to contain None, but they actually get propagated during the start and connection
	with the dedicated server**
	"""
	dedicated_build = None
	dedicated_version = None
	dedicated_api_version = None
	dedicated_title = None

	server_is_dedicated = None
	server_is_server = None
	server_is_private = None
	server_ip = None
	server_p2p_port = None
	server_port = None
	server_player_login = None
	server_player_id = None
	server_download_rate = None
	server_upload_rate = None
	server_data_dir = None
	server_map_dir = None
	server_skin_dir = None
	server_language = None
	server_name = None
	server_path = None
	server_password = None
	server_spec_password = None
	server_max_players = None
	server_next_max_players = None
	server_max_specs = None
	server_next_max_specs = None

	ladder_min = None
	ladder_max = None

	game = None # tm / sm / tmnext

[docs]	def game_from_environment(self, environment, game_name=None, title_id=None):
		if game_name == 'Trackmania' and title_id == 'Trackmania':
			return 'tmnext'
		if environment in ['Canyon', 'Stadium', 'Valley', 'Lagoon']:
			return 'tm'
		return 'sm'

	@property
	def game_full(self):
		if self.game == 'tm':
			return 'trackmania'
		elif self.game == 'tmnext':
			return 'trackmania_next'
		return 'shootmania'

Game = _Game()

 pyplanet.core.instance

 Source code for pyplanet.core.instance

"""
PyPlanet Instance Module

This module holds the main instance class of the PyPlanet system.
"""
import os
import asyncio
import logging
import traceback

from pyplanet.utils.analytics import Analytics
from .controller import Controller as _Controller

from pyplanet import __version__ as version

from pyplanet.apps import Apps
from pyplanet.conf import settings
from pyplanet.core import signals
from pyplanet.core.events import SignalManager
from pyplanet.core.db.database import Database
from pyplanet.core.game import Game
from pyplanet.core.gbx import GbxClient
from pyplanet.core.exceptions import ImproperlyConfigured
from pyplanet.core.storage.storage import Storage
from pyplanet.core.ui import GlobalUIManager
from pyplanet.utils import memleak, releases

from pyplanet.contrib.map import MapManager
from pyplanet.contrib.player import PlayerManager
from pyplanet.contrib.command import CommandManager
from pyplanet.contrib.permission import PermissionManager
from pyplanet.contrib.setting import GlobalSettingManager
from pyplanet.contrib.mode import ModeManager
from pyplanet.contrib.chat import ChatManager

logger = logging.getLogger(__name__)

[docs]class Instance:
	"""
	Controller Instance. The very base of the controller, containing class instances of all core components.

	:ivar process_name: Process and pool name.
	:ivar loop: AsyncIO Event Loop.
	:ivar game: Game Information class.
	:ivar apps: Apps component.
	:ivar gbx: Gbx component.
	:ivar db: Database component.
	:ivar storage: Storage component.
	:ivar signals: Signal Manager (global). Please use the APP context Signal Manager instead!
	:ivar ui_manager: UI Manager (global). Please use the APP context UI Manager instead!

	:ivar map_manager: Contrib: Map Manager.
	:ivar player_manager: Contrib: Player Manager.
	:ivar permission_manager: Contrib: Permission Manager.
	:ivar command_manager: Contrib: Command Manager.
	:ivar setting_manager: Contrib: Setting Manager. Please use the APP context setting manager instead!
	:ivar mode_manager: Contrib. Mode Manager.
	"""

	def __init__(self, process_name):
		"""
		The actual instance of the controller.

		:param process_name: EnvironmentProcess class specific for this process.
		:type process_name: str
		"""
		# Initiate all the core components.
		self.process_name = 		process_name
		self.loop = 				asyncio.get_event_loop()
		self.game =					Game

		self.gbx = 					GbxClient.create_from_settings(self, settings.DEDICATED[self.process_name])
		self.db = 					Database.create_from_settings(self, settings.DATABASES[self.process_name])
		self.storage =				Storage.create_from_settings(self, settings.STORAGE[self.process_name])
		self.signals =				SignalManager
		self.ui_manager =			GlobalUIManager(self)
		self.apps = 				Apps(self)

		# Contrib components.
		self.map_manager =				MapManager(self)
		self.player_manager =			PlayerManager(self)
		self.permission_manager =		PermissionManager(self)
		self.command_manager =			CommandManager(self)
		self.setting_manager =			GlobalSettingManager(self)
		self.mode_manager =				ModeManager(self)
		self.chat_manager = self.chat = ChatManager(self)

		# Populate apps.
		self.apps.populate(settings.MANDATORY_APPS, in_order=True)
		try:
			self.apps.populate(settings.APPS[self.process_name])
		except KeyError as e:
			raise ImproperlyConfigured(
				'One of the pool names doesn\'t reflect into the APPS setting! You must '
				'declare the apps per pool! ({})'.format(str(e))
)

[docs]	def start(self, run_forever=True): # pragma: no cover
		"""
		Start wrapper.
		"""
		try:
			# Start memleak checker.
			memleak.checker.start()

			# Initiate instance.
			self.loop.run_until_complete(self._start())

			# Run forever.
			if run_forever:
				self.loop.run_forever()
		except KeyboardInterrupt: # pragma: no branch
			pass
		except Exception as e:
			logger.exception(e)
			raise
		finally:
			self.stop()

[docs]	def stop(self): # pragma: no cover
		"""
		Stop all the instance apps and managers.
		"""
		try:
			self.loop.run_until_complete(self._stop())
		except Exception as e:
			logger.exception(e)
			raise
		os._exit(0)

	@property
	def performance_mode(self):
		"""
		Gives back a boolean, True if we are in performance mode.

		:return: Performance mode boolean.
		"""
		return self.player_manager.performance_mode

	async def __fire_signal(self, signal): # pragma: no cover
		"""
		Fire signal with given name to all listeners.

		:param signal: Signal to fire on.
		:type signal: pyplanet.core.events.dispatcher.Signal
		"""
		await signal.send(dict(instance=self))

	async def _start(self): # pragma: no cover
		"""
		The start coroutine is executed when the process is ready to create connection to the gbx protocol, database,
		other services and finally start the apps.
		"""
		# Make sure we start the Gbx connection, authenticate, set api version and stuff.
		await self.__fire_signal(signals.pyplanet_start_gbx_before)
		await self.gbx.connect()
		await self.__fire_signal(signals.pyplanet_start_gbx_after)

		# Initiate the database connection, discover apps assets,models etc.
		await self.__fire_signal(signals.pyplanet_start_db_before)
		await self.db.connect()				# Connect and initial state.
		await self.apps.discover() 			# Discover apps models.
		await self.db.initiate() 			# Execute migrations and initial tasks.
		await self.apps.check(True) 		# Check for incompatible apps and remove them.
		await self.apps.init()				# Initiate apps
		await self.ui_manager.on_start() # Initiate UI manager.
		await self.__fire_signal(signals.pyplanet_start_db_after)

		# Start the core contribs.
		await self.setting_manager.on_start()
		await self.map_manager.on_start()
		await self.player_manager.on_start()
		await self.permission_manager.on_start()
		await self.command_manager.on_start()
		await self.mode_manager.on_start()
		await self.chat_manager.on_start()

		# Start the apps, call the on_ready, resulting in apps user logic to be started.
		await self.print_header()
		await self.__fire_signal(signals.pyplanet_start_apps_before)
		await self.apps.start()
		await self.__fire_signal(signals.pyplanet_start_apps_after)
		await self.print_footer()

		# Utils.
		await Analytics.start(self)

		# Finish signalling and send finish signal.
		await self.signals.finish_start()
		await self.__fire_signal(signals.pyplanet_start_after)

	async def _stop(self):
		"""
		The stop coroutine is executed when the process exits with the SIGINT signal.
		"""
		await self.apps.stop()

	async def print_header(self): # pragma: no cover
		await self.chat.execute(
			self.chat('', raw=True),
			self.chat('fffo$w⏳$z$fff Loading...', raw=True)
)

	async def print_footer(self): # pragma: no cover
		await self.chat(
			'\uf1e6 oFD4Py$369Planet$zos$fff v{}, {}\uf013 zs $369|$FD4 '
			'$l[http://pypla.net]Site$l $369|$FD4 '
			'$l[https://github.com/PyPlanet]Github$l $369|$FD4 '
			'$l[http://pypla.net]Docs$l'.format(version, len(self.apps.apps)),
			raw=True
)

		if self.game.game == 'tmnext':
			await self.chat('$f00$oPyPlanet: onNewly support for this Trackmania version. Expect issues'
							', please report to PyPlanet.')

		try:
			asyncio.ensure_future(releases.UpdateChecker.init_checker(self))
		except:
			pass # Completely ignore errors while checking for the latest version.

Controller = _Controller
"""
Controller access point to prevent circular imports. This is a lazy provided way to get the instance from anywhere!
:type Controller: pyplanet.core.Controller
:type: pyplanet.core.Controller
"""

 pyplanet.core.ui

 Source code for pyplanet.core.ui

import asyncio
import logging

from xmlrpc.client import Fault

from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.core.ui.ui_properties import UIProperties
from pyplanet.utils.log import handle_exception

logger = logging.getLogger(__name__)

class _BaseUIManager:
	def __init__(self, instance):
		"""
		Initiate manager.

		:param instance: Instance of controller.
		:type instance: pyplanet.core.instance.Instance
		"""
		self.instance = instance
		self.manialinks = dict()
		self.send_queue = list()

	async def on_start(self):
		asyncio.ensure_future(self.send_loop())

	async def send_loop(self):
		while True:
			await asyncio.sleep(0.25)
			if len(self.send_queue) == 0:
				continue

			# Copy send queue and clear the global one
			queue = self.send_queue.copy()
			self.send_queue.clear()

			# Process and push out the queue.
			try:
				await self.instance.gbx.multicall(*queue)
			except Fault as e:
				if 'Login unknown' in str(e):
					return
				logger.exception(e)
				handle_exception(exception=e, module_name=__name__, func_name='send_loop')
			except Exception as e:
				logger.exception(e)
				handle_exception(exception=e, module_name=__name__, func_name='send_loop')

	def get_manialink_by_id(self, identifier):
		"""
		Get Manialink instance by ManiaLink identifier.

		:param identifier: Identifier string
		:type identifier: str
		:return: ManiaLink instance or None
		:rtype: pyplanet.core.ui.components.manialink._ManiaLink
		"""
		if identifier in self.manialinks:
			return self.manialinks[identifier]
		return None

	async def send(self, manialink, players=None, **kwargs):
		"""
		Send manialink to player(s).

		:param manialink: ManiaLink instance.
		:param players: Player instances or logins to post to. None to globally send.
		:type manialink: pyplanet.core.ui.components.manialink._ManiaLink
		"""
		queries = list()
		if isinstance(players, list):
			for_logins = [p.login if isinstance(p, Player) else p for p in players]
		elif manialink.player_data:
			for_logins = list(manialink.player_data.keys())
		else:
			for_logins = list()

		# Register to the manialink context.
		if manialink.id not in self.manialinks:
			self.manialinks[manialink.id] = manialink

		is_global = await manialink.is_global()
		if not is_global:
			for login in for_logins:
				if login not in manialink.player_data:
					continue

				if await manialink.get_template() and not manialink.body:
					body = await manialink.render(player_login=login)
				elif manialink.body:
					body = manialink.body
				else:
					raise Exception('Manialink has no body or template defined!')

				# Add manialink tag to body.
				body = '<manialink version="{}" id="{}">{}</manialink>'.format(manialink.version, manialink.id, body)

				# Prepare query
				queries.append(self.instance.gbx(
					'SendDisplayManialinkPageToLogin', login, body, manialink.timeout, manialink.hide_click
))

		else:
			# Render/body
			if await manialink.get_template() and not manialink.body:
				body = await manialink.render()
			elif manialink.body:
				body = manialink.body
			else:
				raise Exception('Manialink has no body or template defined!')

			# Add manialink tag to body.
			body = '<manialink version="{}" id="{}">{}</manialink>'.format(manialink.version, manialink.id, body)

			# Add normal queries.
			if for_logins and len(for_logins) > 0:
				for login in for_logins:
					# Prepare query
					queries.append(self.instance.gbx(
						'SendDisplayManialinkPageToLogin', login, body, manialink.timeout, manialink.hide_click
))
			else:
				# Prepare query
				queries.append(self.instance.gbx(
					'SendDisplayManialinkPage', body, manialink.timeout, manialink.hide_click
))

		# Hide ALT menus (shootmania).
		if self.instance.game.game == 'sm' and manialink.disable_alt_menu:
			if is_global:
				queries.extend([
					self.instance.gbx('Maniaplanet.UI.SetAltScoresTableVisibility', player.login, 'false', encode_json=False, response_id=False)
					for player in self.instance.player_manager.online
])
			else:
				queries.extend([
					self.instance.gbx('Maniaplanet.UI.SetAltScoresTableVisibility', login, 'false', encode_json=False, response_id=False)
					for login in for_logins
])

		# It the manialink wants rate limitting with the relaxed updating feature (mostly used for widgets), add to send queue
		if getattr(manialink, 'relaxed_updating', False):
			self.send_queue.extend(queries)
			return

		# Execute calls, ignore login unknown (player just left).
		try:
			await self.instance.gbx.multicall(*queries)
		except Fault as e:
			if 'Login unknown' in str(e):
				return
			raise

	async def hide(self, manialink, logins=None):
		"""
		Send manialink to player(s).

		:param manialink: ManiaLink instance.
		:param logins: Logins to post to. None to globally send.
		:type manialink: pyplanet.core.ui.components.manialink._ManiaLink
		"""
		body = '<manialink id="{}"></manialink>'.format(manialink.id)
		queries = list()
		if logins and len(logins) > 0:
			queries.append(
				self.instance.gbx('SendDisplayManialinkPageToLogin', ','.join(logins), body, 0, False)
)

			# Show alt menu again.
			if self.instance.game.game == 'sm' and manialink.disable_alt_menu:
				queries.extend([
					self.instance.gbx('Maniaplanet.UI.SetAltScoresTableVisibility', login, 'true', encode_json=False, response_id=False)
					for login in logins
])
		else:
			queries.append(self.instance.gbx('SendDisplayManialinkPage', body, 0, False))
			if self.instance.game.game == 'sm' and manialink.disable_alt_menu:
				queries.extend([
					self.instance.gbx('Maniaplanet.UI.SetAltScoresTableVisibility', player.login, 'true', encode_json=False, response_id=False)
					for player in self.instance.player_manager.online
])

		# It the manialink wants rate limitting with the relaxed updating feature (mostly used for widgets), add to send queue
		if getattr(manialink, 'relaxed_updating', False):
			self.send_queue.extend(queries)
			return

		# Execute queries.
		await self.instance.gbx.multicall(*queries)

	async def destroy(self, manialink, logins=None):
		if manialink.id in self.manialinks:
			del self.manialinks[manialink.id]
		return await self.hide(manialink, logins)

class GlobalUIManager(_BaseUIManager):
	def __init__(self, instance):
		super().__init__(instance)
		self.app_managers = dict()
		self.properties = UIProperties(self.instance)

	async def on_start(self):
		await super().on_start()
		await self.properties.on_start()

		# Start app ui managers.
		await asyncio.gather(*[
			m.on_start() for m in self.app_managers.values()
])

	def get_manialink_by_id(self, identifier):
		"""
		Get Manialink instance by ManiaLink identifier. (From all apps ui managers as well).

		:param identifier: Identifier string
		:type identifier: str
		:return: ManiaLink instance or None
		:rtype: pyplanet.core.ui.components.manialink._ManiaLink
		"""
		global_ui = super().get_manialink_by_id(identifier)
		if global_ui is not None:
			return global_ui

		for app_manager in self.app_managers.values():
			app_manialink = app_manager.get_manialink_by_id(identifier)
			if app_manialink is not None:
				return app_manialink

	def create_app_manager(self, app_config):
		"""
		Create app ui manager.

		:param app_config: App Config instance.
		:type app_config: pyplanet.apps.config.AppConfig
		:return: UI Manager
		:rtype: pyplanet.core.ui.AppUIManager
		"""
		if app_config.label not in self.app_managers:
			self.app_managers[app_config.label] = AppUIManager(self.instance, app_config)
		return self.app_managers[app_config.label]

[docs]class AppUIManager(_BaseUIManager):
	"""
	The App UI manager is here to maintain the context of the app and have it destroy all the listeners when the app
	is unloaded.
	"""

	def __init__(self, instance, app):
		"""
		Initiate app ui manager.

		:param instance: Controller instance.
		:param app: App Config instance.
		:type instance: pyplanet.core.instance.Instance
		:type app: pyplanet.apps.config.AppConfig
		"""
		super().__init__(instance)
		self.app = app

	async def on_destroy(self):
		links = self.manialinks.copy()
		for ml in links.values():
			try:
				await ml.destroy()
			except Exception as e:
				logger.warning('Got exception while destroying apps UI: {}'.format(str(e)))
				logger.debug(e)
			try:
				del ml
			except:
				pass

		self.manialinks.clear()

 pyplanet.core.events.callback

 Source code for pyplanet.core.events.callback

"""
This file contains a glue between core callbacks and desired callbacks.
"""
from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.core.events import Signal, SignalManager

[docs]class Callback(Signal):
	"""
	A callback signal is an double signal. Once for the GBX Callback itself (the Gbx callback named). And the destination
	Between those two signals is a sort of `processor` that confirms it into the PyPlanet style objects.

	For example, a player connect will result in a player database object instead of the plain Maniaplanet payload.
	This will make it possible to develop your app as fast as possible, without any overhead and make it better
	with callback payload changes!
	"""
	def __init__(self, call, namespace, code, target=None):
		"""
		Shortcut for registering two signals, one is the raw signal and the second one is the parsed and structured
		output signal. This also glues the two together.

		:param call:
		:param namespace:
		:param code:
		:param target:
		"""
		# Initiate destination signal (ourself).
		super().__init__(code=code, namespace=namespace, process_target=target)

		# Initiate raw signal, the raw gbx/script callback.
		self.raw_signal = Signal(code=call, namespace='raw')
		self.raw_signal.register(self.glue, weak=False)

		SignalManager.register_signal(self.raw_signal, app=None, callback=True)
		SignalManager.register_signal(self, app=None)

[docs]	async def glue(self, signal, source, **kwargs):
		"""
		The glue method converts the source signal (gbx callback) into the pyplanet signal.
		"""
		return await self.send_robust(source)

[docs]async def handle_generic(source, signal, **kwargs):
	"""
	The handle_generic is a simple handle (`processing glue`) for just forwarding the payload from the maniaplanet
	server into the signal payload.
	"""
	if not isinstance(source, dict):
		source = dict(raw=source)
	if 'login' in source:
		try:
			if source['login']:
				source['player'] = await Player.get_by_login(source['login'])
			else:
				source['player'] = None
		except:
			source['player'] = None

	return source

 pyplanet.core.events.dispatcher

 Source code for pyplanet.core.events.dispatcher

"""
This file has been forked from Django and PyDispatcher.
The PyDispatcher is licensed under BSD.
"""
import threading
import weakref
import logging
import asyncio

from pyplanet.core.exceptions import SignalException, SignalGlueStop
from pyplanet.utils.log import handle_exception

def _make_id(target):
	if hasattr(target, '__func__'):
		return id(target.__self__), id(target.__func__)
	return id(target)

NONE_ID = _make_id(None)
NO_RECEIVERS = object()

logger = logging.getLogger(__name__)

[docs]class Signal:
	"""
	A signal is a destination tho distribute to where multiple listeners get the message. (event distribution).
	"""

	def __init__(self, code=None, namespace=None, process_target=None, use_caching=False):
		"""
		Create a new signal.
		"""
		if not process_target:
			process_target = self.process
		self.process_target = process_target

		self.receivers = list()
		self.self_refs = dict()
		self.lock = threading.Lock()

		if code:
			self.code = code
		else:
			self.code = self.Meta.code

		if namespace:
			self.namespace = namespace
		else:
			self.namespace = self.Meta.namespace

		self.use_caching = use_caching
		self.sender_receivers_cache = weakref.WeakKeyDictionary() if use_caching else {}
		self._dead_receivers = False

[docs]	class Meta:
		"""
		The meta-class contains the code of the signal, used for string notation.
		An optional namespace could be given to override the app label namespace.

		.. warning::

			Only change or access this if you override the ``Signal`` class in your own class.

		"""
		code = None
		namespace = None

[docs]	async def process(self, **data):
		"""
		This method processed data into abstract data. You can give your own function in the init of the Signal or
		override the method.

		:param data: Raw data input
		:return: Parsed data output
		"""
		return data

[docs]	def has_listeners(self):
		"""
		Has the signal listeners.

		:return:
		"""
		return bool(self._live_receivers())

[docs]	def set_self(self, receiver, slf): # pragma: no cover
		"""
		Set the self instance on a receiver.

		.. deprecated:: 0.0.1

		:param receiver: Receiver function.
		:param slf: Self instance
		"""
		with self.lock:
			lookup_key = _make_id(receiver)
			for key, _ in self.receivers:
				if lookup_key == key:
					ref = weakref.ref
					slf = ref(slf)
					self.self_refs[lookup_key] = slf
					return
			raise Exception('Receiver is not yet known! You registered too early!')

[docs]	def register(self, receiver, weak=True, dispatch_uid=None):
		"""
		Connect receiver to sender for signal.

		:param receiver: A function or an instance method which is to receive signals. Receivers must be hashable objects.
			If weak is True, then receiver must be weak referenceable.Receivers must be able to accept keyword arguments.
			If a receiver is connected with a dispatch_uid argument, it
			will not be added if another receiver was already connected with that dispatch_uid.

		:param weak: Whether to use weak references to the receiver. By default, the
			module will attempt to use weak references to the receiver
			objects. If this parameter is false, then strong references will
			be used.

		:param dispatch_uid: An identifier used to uniquely identify a particular instance of
			a receiver. This will usually be a string, though it may be anything hashable.
		"""
		if dispatch_uid:
			lookup_key = dispatch_uid
		else:
			lookup_key = _make_id(receiver)

		if weak:
			ref = weakref.ref
			receiver_object = receiver

			# Check for bound methods.
			if hasattr(receiver, '__self__') and hasattr(receiver, '__func__'):
				ref = weakref.WeakMethod
				receiver_object = receiver.__self__
			receiver = ref(receiver)
			weakref.finalize(receiver_object, self._remove_receiver)

		with self.lock:
			self._clear_dead_receivers()
			for rec_key in self.receivers:
				if rec_key == lookup_key:
					break
			else:
				self.receivers.append((lookup_key, receiver))
			self.sender_receivers_cache.clear()

[docs]	def unregister(self, receiver=None, dispatch_uid=None):
		"""
		Disconnect receiver from sender for signal.
		If weak references are used, disconnect need not be called. The receiver
		will be removed from dispatch automatically.

		:param receiver: The registered receiver to disconnect. May be none if dispatch_uid is specified.
		:param dispatch_uid: the unique identifier of the receiver to disconnect
		"""
		if dispatch_uid:
			lookup_key = dispatch_uid
		else:
			lookup_key = _make_id(receiver)

		disconnected = False
		with self.lock:
			self._clear_dead_receivers()
			for index in range(len(self.receivers)):
				(rec_key, _) = self.receivers[index]
				if rec_key == lookup_key:
					disconnected = True
					del self.receivers[index]
					if rec_key in self.self_refs:
						del self.self_refs[rec_key]
					break
			self.sender_receivers_cache.clear()

		return disconnected

	@staticmethod
	async def execute_receiver(receiver, args, kwargs, ignore_exceptions=False):
		try:
			if asyncio.iscoroutinefunction(receiver):
				if len(args) > 0:
					return receiver, await receiver(*args, **kwargs)
				return receiver, await receiver(**kwargs)

			if len(args) > 0:
				return receiver, receiver(*args, **kwargs)
			return receiver, receiver(**kwargs)
		except Exception as exc:
			if not ignore_exceptions:
				raise

			logger.exception(SignalException(
				'Signal receiver \'{}\' => {} thrown an exception!'.format(receiver.__module__, receiver.__name__)
), exc_info=False)

			# Handle, will send to sentry if it's related to the core/contrib apps.
			handle_exception(exc, receiver.__module__, receiver.__name__)

			# Log the actual exception.
			logger.exception(exc)
			return receiver, exc

[docs]	async def send(self, source, raw=False, catch_exceptions=False, gather=True):
		"""
		Send signal with source.
		If any receiver raises an error, the error propagates back through send,
		terminating the dispatch loop. So it's possible that all receivers
		won't be called if an error is raised.

		:param source: The data to be send to the processor which produces data that will be send to the receivers.
		:param raw: Optional bool parameter to just send the source to the receivers without any processing.
		:param catch_exceptions: Catch and return the exceptions.
		:param gather: Execute multiple receivers at the same time (parallel). On by default!

		:return: Return a list of tuple pairs [(receiver, response), ...].
		"""
		if raw is False:
			try:
				kwargs = await self.process_target(signal=self, source=source)
			except SignalGlueStop:
				# Stop calling the receivers when our glue says we should!
				return []
		else:
			kwargs = dict(**source, signal=self)

		if not self.receivers:
			return []

		# Prepare the responses from the calls.
		responses = []
		gather_list = []
		for key, receiver in self._live_receivers():
			# Dereference the weak reference.
			slf = self.self_refs.get(key, None)
			if slf and isinstance(slf, weakref.ReferenceType):
				slf = slf()
			args = [slf] if slf else []

			# Execute the receiver.
			coro = self.execute_receiver(receiver, args, kwargs, ignore_exceptions=catch_exceptions)
			if gather:
				gather_list.append(coro)
			else:
				responses.append(await coro)

		# If gather, wait on the asyncio.gather operation and return the responses from there.
		if gather:
			return await asyncio.gather(*gather_list)

		# Done, respond with all the results
		return responses

[docs]	async def send_robust(self, source=None, raw=False, gather=True):
		"""
		Send signal from sender to all connected receivers catching errors.

		:param source: The data to be send to the processor which produces data that will be send to the receivers.
		:param raw: Optional bool parameter to just send the source to the receivers without any processing.
		:param gather: Execute multiple receivers at the same time (parallel). On by default!

		:return: Return a list of tuple pairs [(receiver, response), ...].
			If any receiver raises an error (specifically any subclass of Exception),
			return the error instance as the result for that receiver.
		"""
		return await self.send(source, raw, catch_exceptions=True, gather=gather)

	def _clear_dead_receivers(self):
		if self._dead_receivers:
			self._dead_receivers = False
			new_receivers = []
			for rec in self.receivers:
				if isinstance(rec[1], weakref.ReferenceType) and rec[1]() is None:
					continue
				new_receivers.append(rec)
			self.receivers = new_receivers

	def _live_receivers(self):
		"""
		Filter sequence of receivers to get resolved, live receivers.
		This checks for weak references and resolves them, then returning only
		live receivers.
		"""
		# We don't use the sender. Set it to none.
		sender = None

		receivers = None
		if self.use_caching and not self._dead_receivers:
			receivers = self.sender_receivers_cache.get(sender)
			# We could end up here with NO_RECEIVERS even if we do check this case in
			# .send() prior to calling _live_receivers() due to concurrent .send() call.
			if receivers is NO_RECEIVERS:
				return []

		if receivers is None:
			with self.lock:
				self._clear_dead_receivers()
				receivers = []
				for receiverkey, receiver in self.receivers:
					receivers.append((receiverkey, receiver))
				if self.use_caching:
					if not receivers:
						self.sender_receivers_cache[sender] = NO_RECEIVERS
					else:
						# Note, we must cache the weakref versions.
						self.sender_receivers_cache[sender] = receivers
		non_weak_receivers = []

		for receiver in receivers:
			key = receiver[0]
			receiver = receiver[1]

			if isinstance(receiver, weakref.ReferenceType):
				# Dereference the weak reference.
				receiver = receiver()
				if receiver is not None:
					non_weak_receivers.append((key, receiver))
			else:
				non_weak_receivers.append((key, receiver))
		return non_weak_receivers

	def _remove_receiver(self):
		# The list must be marked as dead. And will be cleaned in the next registry or call.
		# We can't directly remove because GC is always running when lock is preserved.
		self._dead_receivers = True

 pyplanet.core.events.manager

 Source code for pyplanet.core.events.manager

"""
The events manager contains the class that manages custom and abstract callbacks into the system callbacks.
Once a signals is registered here it could be used by string reference. This makes it easy to have dynamically signals
being created by other apps in a single place so it could be used over all apps.

For example you would create your own custom signal if you have a app for your own created game mode script that abstracts
all the raw XML-RPC events into nice structured and maybe even including fetched data from external sources.
"""
import importlib
import logging
import sys

from pyplanet.core.events import Signal

[docs]class _SignalManager:
	"""
	Signal Manager class.

	.. note::

		Access this in the app via ``self.context.signals``.

	"""

	def __init__(self):
		self.app_managers = dict()

		self.signals = dict()
		self.callbacks = dict()

		# Reserved signal receivers, this will be filled, and copied to real signals later on.
		self.reserved = dict()
		self.reserved_self = dict()
		#

		self.namespaces = list()

		# This var is used to temporary override namespaces when processing apps.
		self._current_namespace = None

[docs]	def register_signal(self, signal, app=None, callback=False):
		"""
		Register a signal to be known in the signalling system.

		:param signal: Signal(s)
		:param app: App context/instance.
		:param callback: Will a callback handle the response (mostly raw callbacks).
		"""
		if isinstance(signal, list):
			for sig in signal:
				self.register_signal(sig)
			return

		if not signal.code:
			raise Exception('Signal code is not valid!')
		if not signal.namespace and self._current_namespace:
			namespace = self._current_namespace
		else:
			namespace = signal.namespace
		code = signal.code

		if not hasattr(signal, 'receivers'):
			instance = signal()
		else:
			instance = signal

		signal_code = '{}:{}'.format(namespace, code)

		if callback:
			self.callbacks[code] = instance
		else:
			self.signals[signal_code] = instance

[docs]	def listen(self, signal, target, conditions=None, **kwargs):
		"""
		Register a listing client to the signal given (signal instance or string).

		:param signal: Signal instance or string: "namespace:code"
		:param target: Target method to call.
		:param conditions: Reserved for future purposes.
		"""
		try:
			if not isinstance(signal, Signal):
				signal = self.get_signal(signal)
			signal.register(target, **kwargs)
		except:
			if signal not in self.reserved:
				self.reserved[signal] = list()
			self.reserved[signal].append((target, kwargs))

[docs]	def get_callback(self, call_name):
		"""
		Get signal by XML-RPC (script) callback.

		:param call_name: Callback name.
		:return: Signal class or nothing.
		:rtype: pyplanet.core.events.Signal
		"""
		if call_name in self.callbacks:
			return self.callbacks[call_name]
		logging.debug('No callback registered for {}'.format(call_name))
		return None

[docs]	def get_signal(self, key):
		"""
		Get signal by key (namespace:code).

		:param key: namespace:code key.
		:return: signal or none
		:rtype: pyplanet.core.events.Signal
		"""
		if key in self.signals:
			return self.signals[key]
		else:
			raise KeyError('No such signal {}!'.format(key))

[docs]	def finish_reservations(self): # pragma: no cover
		"""
		The method will copy all reservations to the actual signals. (PRIVATE)
		"""
		for sig_name, recs in self.reserved.items():
			for func, kwargs in recs:
				try:
					signal = self.get_signal(sig_name)
					signal.connect(func, **kwargs)
				except Exception as e:
					logging.warning('Signal not found: {}, {}'.format(
						sig_name, e
), exc_info=sys.exc_info())

		for sig_name, recs in self.reserved_self.items():
			for func, slf in recs:
				try:
					signal = self.get_signal(sig_name)
					signal.set_self(func, slf)
				except Exception as e:
					logging.warning(str(e), exc_info=sys.exc_info())

		self.reserved = dict()
		self.reserved_self = dict()

[docs]	def init_app(self, app):
		"""
		Initiate app, load all signal/callbacks files. (just import, they should register with decorators).

		:param app: App instance
		:type app: pyplanet.apps.AppConfig
		"""
		self._current_namespace = app.label

		# Import the signals module.
		try:
			importlib.import_module('{}.signals'.format(app.name))
		except ImportError:
			pass
		self._current_namespace = None

		# Import the callbacks module.
		try:
			importlib.import_module('{}.callbacks'.format(app.name))
		except ImportError:
			pass

[docs]	async def finish_start(self, *args, **kwargs):
		"""
		Finish startup the core, this will copy reservations. (PRIVATE).
		"""
		self.finish_reservations()

[docs]	def create_app_manager(self, app):
		"""
		This method will create the manager instance for the app context.

		:param app: App instance.
		:type app: pyplanet.apps.config.AppConfig
		:return: SignalManager instance for the app.
		:rtype: pyplanet.core.events.manager.AppSignalManager
		"""
		return AppSignalManager(self, app)

class AppSignalManager:

	def __init__(self, manager, app):
		"""
		Create the app manager proxy.
		:param manager: Signal manager (core global).
		:param app: App instance.
		:type manager: pyplanet.core.events.manager._SignalManager
		:type app: pyplanet.apps.config.AppConfig
		"""
		self.manager = manager
		self.app = app

		# Hold these to delete when the context is destroyed.
		self.signals = list()
		self.listeners = list()

	def register_signal(self, signal, callback=False):
		"""
		Register a signal to be known in the signalling system.

		:param signal: Signal(s)
		:param callback: Will a callback handle the response (mostly raw callbacks).
		"""
		self.manager.register_signal(signal, self.app, callback=callback)
		self.signals = list

	def listen(self, signal, target, conditions=None, **kwargs):
		"""
		Register a listing client to the signal given (signal instance or string).

		:param signal: Signal instance or string: "namespace:code"
		:param target: Target method to call.
		:param conditions: Reserved for future purposes.
		"""
		self.manager.listen(signal, target, conditions, **kwargs)
		self.listeners.append((signal, target))

	def get_callback(self, call_name):
		"""
		Get signal by XML-RPC (script) callback.

		:param call_name: Callback name.
		:return: Signal class or nothing.
		:rtype: pyplanet.core.events.Signal
		"""
		return self.manager.get_callback(call_name)

	def get_signal(self, key):
		"""
		Get signal by key (namespace:code).

		:param key: namespace:code key.
		:return: signal or none
		:rtype: pyplanet.core.events.Signal
		"""
		return self.manager.get_signal(key)

	async def on_destroy(self):
		for signal, target in self.listeners:
			try:
				signal.unregister(target)
			except Exception as e:
				logging.exception(e)

		# TODO: Delete signals.

SignalManager = _SignalManager()

def public_signal(cls):
	SignalManager.register_signal(cls)
	return cls

def public_callback(cls):
	SignalManager.register_signal(cls)
	return cls

 pyplanet.core.storage.exceptions

 Source code for pyplanet.core.storage.exceptions

[docs]class StorageException(Exception):
	"""Base storage exception."""

 pyplanet.core.storage.storage

 Source code for pyplanet.core.storage.storage

import asyncio_extras
import os

import importlib
from async_generator import yield_

from pyplanet.conf import settings
from pyplanet.core.storage import StorageDriver, StorageInterface

[docs]class Storage(StorageInterface):
	"""
	The storage component manager is managing the storage access trough drivers that can be customized.
	
	.. warning::
	
		Some drivers are work in progress!

	"""
	MAP_FOLDER = 'UserData/Maps'
	MATCHSETTINGS_FOLDER = 'UserData/Maps/MatchSettings'

	def __init__(self, instance, driver: StorageDriver, config):
		"""
		Initiate storage manager.
		
		:param instance: Instance of the controller.
		:param driver: Driver instance, must be init already!
		:param config: Storage configuration (including driver + driver config).
		:type instance: pyplanet.core.instance.Instance
		:type driver: pyplanet.core.storage.interface.StorageDriver
		:type config: dict
		"""
		self._instance = instance
		self._driver = driver
		self._config = config
		self._game = None

		# Create temp folders for driver.
		self._tmp_root = os.path.join(settings.TMP_PATH, self._instance.process_name)
		self._tmp_driver = os.path.join(self._tmp_root,)

	@classmethod
	def create_from_settings(cls, instance, storage_config):
		driver_path, _, driver_cls_name = storage_config['DRIVER'].rpartition('.')
		driver_options = storage_config['OPTIONS'] if 'OPTIONS' in storage_config else dict()
		driver_cls = getattr(importlib.import_module(driver_path), driver_cls_name)
		driver = driver_cls(instance, driver_options)
		return cls(instance, driver, storage_config)

	async def initialize(self):
		self._game = self._instance.game
		self._driver.map_dir = self._game.server_map_dir
		self._driver.skin_dir = self._game.server_skin_dir
		self._driver.data_dir = self._game.server_data_dir
		self._driver.base_dir = self._game.server_data_dir[:len(self._game.server_data_dir)-9]

	@property
	def driver(self):
		"""
		Get the raw driver. Be careful with this!
		
		:return: Driver Instance
		:rtype: pyplanet.core.storage.interface.StorageDriver
		"""
		return self._driver

[docs]	@asyncio_extras.async_contextmanager
	async def open(self, file: str, mode: str = 'rb', **kwargs):
		"""
		Open a file on the server. Use relative path to the dedicated root. Use the other open methods to relative
		from another base path.
		
		:param file: Filename/path, relative to the dedicated root path.
		:param mode: Mode to open, see the python `open` manual for supported modes.
		:return: File handler.
		"""
		context = self._driver.open(file, mode, **kwargs)
		await yield_(await context.__aenter__())
		await context.__aexit__(None, None, None)

[docs]	@asyncio_extras.async_contextmanager
	async def open_match_settings(self, file: str, mode: str = 'r', **kwargs):
		"""
		Open a file on the server. Relative to the MatchSettings folder (UserData/Maps/MatchSettings).
		
		:param file: Filename/path, relative to the dedicated matchsettings folder.
		:param mode: Mode to open, see the python `open` manual for supported modes.
		:return: File handler.
		"""
		context = self._driver.open('{}/{}'.format(self.MATCHSETTINGS_FOLDER, file), mode, **kwargs)
		await yield_(await context.__aenter__())
		await context.__aexit__(None, None, None)

[docs]	@asyncio_extras.async_contextmanager
	async def open_map(self, file: str, mode: str = 'rb', **kwargs):
		"""
		Open a file on the server. Relative to the Maps folder (UserData/Maps).
		
		:param file: Filename/path, relative to the dedicated maps folder.
		:param mode: Mode to open, see the python `open` manual for supported modes.
		:return: File handler.
		"""
		context = self._driver.open('{}/{}'.format(self.MAP_FOLDER, file), mode, **kwargs)
		await yield_(await context.__aenter__())
		await context.__aexit__(None, None, None)

[docs]	async def remove_map(self, file: str):
		"""
		Remove a map file with filename given.
		
		:param file: Filename, relative to Maps folder.
		"""
		await self._driver.remove('{}/{}'.format(self.MAP_FOLDER, file))

 pyplanet.core.storage.drivers.asyncssh

 Source code for pyplanet.core.storage.drivers.asyncssh

import asyncssh
import logging
import os
import async_generator
import asyncio_extras

from pyplanet.core.storage import StorageDriver

logger = logging.getLogger(__name__)

[docs]class SFTPDriver(StorageDriver):
	"""
	SFTP storage driver is using the asyncssh module to access storage that is situated remotely.
	
	.. warning::
	
		This driver is not ready for production use!!
	
	:option HOST: Hostname of destinotion server.
	:option PORT: Port destinotion server.
	:option USERNAME: Username of the user account.
	:option PASSWORD: Password of the user account. (optional if you use public/private keys).
	:option KNOWN_HOSTS: File to the Known Hosts file.
	:option CLIENT_KEYS: Array with client private keys.
	:option PASSPHRASE: Passphrase to unlock private key(s).
	:option KWARGS: Any other options that will be passed to ``asyncssh``.
	"""

	def __init__(self, instance, config: dict = None):
		super().__init__(instance, config)

		# Extract config to local vars.
		self.host = config['HOST']
		self.port = int(config['PORT']) if 'PORT' in config else 22
		self.username = config['USERNAME']
		self.password = config['PASSWORD'] if 'PASSWORD' in config else None
		self.known_hosts = config['KNOWN_HOSTS'] if 'KNOWN_HOSTS' in config and isinstance(config['KNOWN_HOSTS'], list) else []
		self.client_keys = config['CLIENT_KEYS'] if 'CLIENT_KEYS' in config and isinstance(config['CLIENT_KEYS'], list) else []
		self.passphrase = config['PASSPHRASE'] if 'PASSPHRASE' in config else None
		self.kwargs = config['KWARGS'] if 'KWARGS' in config and isinstance(config['KWARGS'], dict) else dict()

		self.options = dict(
			host=self.host, port=self.port, known_hosts=self.known_hosts, username=self.username, password=self.password,
			client_keys=self.client_keys, passphrase=self.passphrase,
)

	@asyncio_extras.async_contextmanager
	async def connect(self):
		ssh = await asyncssh.connect(
			host=self.host, port=self.port, known_hosts=self.known_hosts, username=self.username, password=self.password,
			client_keys=self.client_keys, passphrase=self.passphrase,
).__aenter__()
		await async_generator.yield_(ssh)
		await ssh.__aexit__()

[docs]	@asyncio_extras.async_contextmanager
	async def connect_sftp(self):
		"""
		Get sftp client.
		
		:return: Sftp client.
		:rtype: asyncssh.SFTPClient
		"""
		ssh = await self.connect().__aenter__()
		sftp = await ssh.start_sftp_client().__aenter__()
		await async_generator.yield_(sftp)
		await sftp.__aexit__()
		await ssh.__aexit__()

	async def chmod(self, path: str, mode: int, **kwargs):
		async with self.connect_sftp() as sftp:
			await sftp.chmod(self.absolute(path), mode)

	async def chown(self, path: str, uid: int, gid: int, **kwargs):
		async with self.connect_sftp() as sftp:
			await sftp.chown(self.absolute(path), uid, gid)

	async def close(self, **kwargs):
		pass

	@asyncio_extras.async_contextmanager
	async def open(self, filename: str, mode: str = 'r', **kwargs):
		sftp = await self.connect_sftp().__aenter__()
		fh = await sftp.open(self.absolute(filename), mode, **kwargs).__aenter__()
		await async_generator.yield_(fh)
		await fh.__aexit__()
		await sftp.__aexit__()

	async def get(self, remotepath: str, localpath: str, **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.get(self.absolute(remotepath), localpath, preserve=True, follow_symlinks=True, **kwargs)

	async def put(self, localpath: str, remotepath: str, **kwargs):
		async with self.connect_sftp() as sftp:
			await sftp.put(localpath, self.absolute(remotepath), preserve=True, follow_symlinks=True, **kwargs)

	async def listdir(self, path='.', **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.listdir(self.absolute(path))

	async def mkdir(self, path, mode=511, **kwargs):
		async with self.connect_sftp() as sftp:
			attrs = asyncssh.SFTPAttrs()
			attrs.permissions = mode
			for k, v in kwargs.items():
				attrs.__setattr__(k, v)
			await sftp.mkdir(self.absolute(path), attrs)

	async def remove(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			await sftp.remove(self.absolute(path))

	async def rename(self, oldpath: str, newpath: str, **kwargs):
		async with self.connect_sftp() as sftp:
			await sftp.rename(self.absolute(oldpath), self.absolute(newpath))

	async def rmdir(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			async def rm(file):
				if await sftp.isdir(file):
					files = await sftp.listdir(os.path.join(self.absolute(path), file))
					for subfile in files:
						await rm(subfile)
				else:
					await sftp.remove(file)
			await rm(self.absolute(path))

	async def stat(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.stat(self.absolute(path))

	async def symlink(self, source: str, dest: str, **kwargs):
		async with self.connect_sftp() as sftp:
			await sftp.symlink(self.absolute(source), self.absolute(dest))

	async def exists(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.exists(self.absolute(path))

	async def is_file(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.isfile(self.absolute(path))

	async def is_dir(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.isdir(self.absolute(path))

	async def is_link(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			return await sftp.islink(self.absolute(path))

	async def touch(self, path: str, **kwargs):
		async with self.connect_sftp() as sftp:
			async with sftp.open(self.absolute(path), 'w+') as fh:
				await fh.write('')

	def openable(self):
		return True

 pyplanet.core.storage.drivers.local

 Source code for pyplanet.core.storage.drivers.local

import async_generator
import asyncio_extras
import os
import shutil
import aiofiles

from pyplanet.core.storage import StorageDriver

[docs]class LocalDriver(StorageDriver):
	"""
	Local storage driver is using the Python build-in file access utilities for accessing a local storage-like system.
	
	:option BASE_PATH: Override the maniaplanet given base path.
	"""

	def __init__(self, instance, config: dict = None):
		super().__init__(instance, config)

		self.override_base_path = config['BASE_PATH'] if 'BASE_PATH' in config else None

	def absolute(self, path):
		if self.override_base_path:
			return os.path.join(self.override_base_path, path)
		return os.path.join(self.base_dir or '', path)

	async def chmod(self, path: str, mode: int, **kwargs):
		os.chmod(self.absolute(path), mode, **kwargs)

	async def chown(self, path: str, uid: int, gid: int, **kwargs):
		os.chown(self.absolute(path), uid, gid, **kwargs)

	async def close(self, **kwargs):
		pass

	@asyncio_extras.async_contextmanager
	async def open(self, filename: str, mode: str = 'r', **kwargs):
		fh = await aiofiles.open(self.absolute(filename), mode, **kwargs)
		await async_generator.yield_(fh)

	async def get(self, remotepath: str, localpath: str, **kwargs):
		return shutil.copy(src=self.absolute(remotepath), dst=localpath)

	async def put(self, localpath: str, remotepath: str, **kwargs):
		return shutil.copy(src=localpath, dst=self.absolute(remotepath))

	async def listdir(self, path='.', **kwargs):
		return os.listdir(self.absolute(path))

	async def mkdir(self, path, mode=511, **kwargs):
		os.mkdir(self.absolute(path), mode)

	async def remove(self, path: str, **kwargs):
		os.unlink(self.absolute(path), **kwargs)

	async def rename(self, oldpath: str, newpath: str, **kwargs):
		os.rename(self.absolute(oldpath), self.absolute(newpath))

	async def rmdir(self, path: str, **kwargs):
		shutil.rmtree(self.absolute(path), **kwargs)

	async def stat(self, path: str, **kwargs):
		return os.stat(self.absolute(path), **kwargs)

	async def exists(self, path: str, **kwargs):
		return os.path.exists(self.absolute(path))

	async def is_file(self, path: str, **kwargs):
		return os.path.isfile(self.absolute(path))

	async def is_dir(self, path: str, **kwargs):
		return os.path.isdir(self.absolute(path))

	async def is_link(self, path: str, **kwargs):
		return os.path.islink(self.absolute(path))

	async def symlink(self, source: str, dest: str, **kwargs):
		os.symlink(self.absolute(source), self.absolute(dest), **kwargs)

	async def touch(self, path: str, **kwargs):
		async with self.open(path, 'w+') as fh:
			await fh.write('')

	def openable(self):
		return True

 pyplanet.core.ui.exceptions

 Source code for pyplanet.core.ui.exceptions

[docs]class UIException(Exception):
	"""
	Base exception for UI core component.
	"""
	pass

[docs]class ManialinkMemoryLeakException(UIException):
	"""
	Is thrown when a memory leak is detected in a view. Raised when a manialink responds to a view, but the view is
	vanished for the specified player(s).
	"""
	pass

[docs]class UIPropertyDoesNotExist(UIException):
	"""
	Thrown when UI Property with element doesn't exist.
	"""
	pass

 pyplanet.core.ui.loader

 Source code for pyplanet.core.ui.loader

import os

from jinja2 import PrefixLoader, FileSystemLoader, PackageLoader

class _PyPlanetLoader(PrefixLoader):

	def __init__(self, mapping=None, delimiter='/'):
		super().__init__(mapping=mapping or self.get_mapping(), delimiter=delimiter)

	@classmethod
	def get_mapping(cls):
		from pyplanet.core import Controller

		mapping = dict()

		# Static core components.
		mapping['core.views'] = PackageLoader('pyplanet.views', 'templates')

		# Add app prefixes.
		for app_label, app in Controller.instance.apps.apps.items():
			template_path = os.path.join(app.path, 'templates')
			if os.path.exists(template_path):
				mapping[app_label] = FileSystemLoader(template_path)

		return mapping

[docs]class PyPlanetLoader:
	"""
	Lazy loader for the pyplanet jinja2 loader.
	"""
	_INSTANCE = None

	@classmethod
	def get_loader(cls):
		if not cls._INSTANCE:
			cls._INSTANCE = _PyPlanetLoader()
		return cls._INSTANCE

 pyplanet.core.ui.template

 Source code for pyplanet.core.ui.template

from jinja2 import Environment, select_autoescape

from pyplanet.conf import settings
from pyplanet.core.ui.loader import PyPlanetLoader

async def load_template(file):
	return Template(file)

class _EnvironmentManager:
	def __init__(self):
		self._environment = None

	@property
	def environment(self):
		if not self._environment:
			self._environment = Environment(
				enable_async=True,
				loader=PyPlanetLoader.get_loader(),
				autoescape=select_autoescape(['html', 'xml', 'Txt', 'txt', 'ml', 'ms', 'script.txt', 'Script.Txt']),
				auto_reload=bool(settings.DEBUG),
)
		return self._environment

EnvironmentManager = _EnvironmentManager()

[docs]class Template:
	"""
	Template class manages the template file source and the rendering of it.

	Will also take care of the loader of the Jinja2 template engine.

	Some notable prefixes:

	- core.views: ``pyplanet.views.templates``.
	- core.pyplanet: ``pyplanet.apps.core.pyplanet.templates``.
	- core.maniaplanet: ``pyplanet.apps.core.pyplanet.templates``.
	- core.trackmania: ``pyplanet.apps.core.trackmania.templates``.
	- core.shootmania: ``pyplanet.apps.core.shootmania.templates``.
	- [app_label]: ``[app path]/templates``.
	"""

	def __init__(self, file):
		self.file = file
		self.env = EnvironmentManager.environment
		self.template = self.env.get_template(file)

	async def render(self, **data):
		return await self.template.render_async(**data)

 pyplanet.core.ui.ui_properties

 Source code for pyplanet.core.ui.ui_properties

"""
The UI Properties will be set and hold in the class definition bellow.
"""
import json
import logging
import xmltodict as xd

from pyplanet.core.signals import pyplanet_start_after
from pyplanet.core.ui.exceptions import UIPropertyDoesNotExist
from pyplanet.utils.functional import empty

logger = logging.getLogger(__name__)

[docs]class UIProperties: # pragma: no cover
	"""
	Set the custom Script UI Properties.

	.. tip::

		Look at the possible UI Properties right here:

		- Trackmania: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#trackmaniauisetproperties
		- Shootmania: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
		- TM2020: Undocumented by Nadeo, check in-game tool OpenPlanet and discover what properties exist and what it means.

	Access this class with:

	.. code-block:: python

		self.instance.ui_manager.properties
	"""
	specials = ('_properties', '_instance')

	def __init__(self, instance):
		"""
		:param instance: Instance
		:type instance: pyplanet.core.instance.Instance
		"""
		self._instance = instance
		self._raw = None
		self._properties = dict()
		self._update_properties = dict()

	@property
	def properties(self):
		if self._instance.game.game in ['tm', 'sm']:
			if 'ui_properties' in self._properties:
				return self._properties['ui_properties']
		else:
			if self._properties:
				return self._properties
		return False

	async def on_start(self):
		await self.reset()
		await self.refresh_properties()
		self._instance.signals.listen(pyplanet_start_after, self.send_properties)

[docs]	async def reset(self):
		"""
		Reset the UI Properties to the default ManiaPlanet ones.
		:return:
		"""
		if self._instance.game.game == 'tm':
			method = 'Trackmania.UI.ResetProperties'
		elif self._instance.game.game == 'sm':
			method = 'Shootmania.UI.ResetProperties'
		else:
			method = 'Common.UIModules.ResetProperties'
		try:
			logger.debug('Resetting UIProperties...')
			await self._instance.gbx.script(method, response_id=False)
		except Exception as e:
			logger.warning('Unable to reset UIProperties: {}'.format(str(e)))

	async def refresh_properties(self):
		if self._instance.game.game == 'tm':
			method = 'Trackmania.UI.GetProperties'
		elif self._instance.game.game == 'sm':
			method = 'Shootmania.UI.GetProperties'
		else:
			method = 'Common.UIModules.GetProperties'
		try:
			if self._instance.game.game == 'tm' or self._instance.game.game == 'sm':
				self._raw = await self._instance.gbx(method, timeout=2)
				self._properties = xd.parse(self._raw['raw_1'])
			else:
				self._raw = await self._instance.gbx(method, timeout=2)
				self._properties = dict()
				for entry in self._raw['uimodules']:
					self._properties[entry['id']] = entry
		except Exception as e:
			self._properties = dict()
			self._raw = None

[docs]	def set_visibility(self, element: str, visible: bool):
		"""
		Set the visibility of the UI Property and don't complain about failing to set. Must be set at the start of the
		app(s).

		:param element: Element name, such as notices, map_info and chat.
						Full list: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
		:param visible: Boolean if the element should be visible.
		:return: Boolean, true if is set, false if failed to set.
		"""
		return self.set_attribute(element, 'visible', 'true' if visible else 'false')

[docs]	def get_visibility(self, element: str, default=empty):
		"""
		Set the visibility of the UI Property and don't complain about failing to set. Must be set at the start of the
		app(s).

		:param element: Element name, such as notices, map_info and chat.
						Full list: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
		:param default: The default value, or an exception if not given.
		:return: The boolean if it's visible or raise exception if not exists (or the default if default is given).
		"""
		value = self.get_attribute(element, 'visible', default)
		if isinstance(value, str):
			if value.lower() == 'true':
				return True
			elif value.lower() == 'false':
				return False
		return value

[docs]	def set_attribute(self, element: str, attribute: str, value):
		"""
		Set an attribute of an element and silent if it's not found. Useful to change positions but unsure if it will
		and still exists. Returns boolean if it's set successfully.

		:param element: Element name
		:param attribute: Attribute name
		:param value: New value of the attribute.
		:return: Boolean if it's set correctly.
		"""
		if not self._properties:
			return False
		if self._instance.game.game in ['tm', 'sm']:
			if element not in self.properties:
				return False
			if '@{}'.format(attribute) not in self.properties[element]:
				return False
			self.properties[element]['@{}'.format(attribute)] = value
		else:
			if element not in self.properties:
				return False

			self.properties[element][attribute] = value
			if element not in self._update_properties:
				self._update_properties[element] = dict(id=element)
			self._update_properties[element][attribute] = value
			self._update_properties[element]['{}_update'.format(attribute)] = True
		return True

[docs]	def get_attribute(self, element: str, attribute: str, default=empty):
		"""
		Get an attribute value of an element.

		:param element: Element name
		:param attribute: Attribute name
		:param default: Default if not found.
		:return: Boolean if it's set correctly.
		"""
		if not self._properties:
			if default is not empty:
				return default
			raise UIPropertyDoesNotExist('UI Properties are not present')
		if element not in self.properties:
			if default is not empty:
				return default
			raise UIPropertyDoesNotExist('UI Properties has no element with name \'{}\''.format(element))
		if self._instance.game.game in ['tm', 'sm'] and '@{}'.format(attribute) not in self.properties[element]:
			if default is not empty:
				return default
			raise UIPropertyDoesNotExist('UI Properties has no attribute with name \'{}\''.format(attribute))
		elif attribute not in self.properties[element]:
			if default is not empty:
				return default
			raise UIPropertyDoesNotExist('UI Properties has no attribute with name \'{}\''.format(attribute))

		if self._instance.game.game in ['tm', 'sm']:
			return self.properties[element]['@{}'.format(attribute)]
		return self.properties[element][attribute]

	async def send_properties(self, **kwargs):
		if not self._properties or (self._instance.game.game in ['tm', 'sm'] and 'ui_properties' not in self._properties):
			return

		# Decide the method to use.
		if self._instance.game.game == 'tm':
			method = 'Trackmania.UI.SetProperties'
		elif self._instance.game.game == 'sm':
			method = 'Shootmania.UI.SetProperties'
		else:
			method = 'Common.UIModules.SetProperties'

		if self._instance.game.game in ['tm', 'sm']:
			# Create XML document
			try:
				xml = xd.unparse(self._properties, full_document=False, short_empty_elements=True)
			except Exception as e:
				logger.warning('Can\'t convert UI Properties to XML document! Error: {}'.format(str(e)))
				return

			try:
				await self._instance.gbx(method, xml, encode_json=False, response_id=False)
			except Exception as e:
				logger.warning('Can\'t send UI Properties! Error: {}'.format(str(e)))
				return
		else:
			# Update TM2020 properties.
			try:
				await self._instance.gbx(
					method,
					json.dumps(dict(uimodules=list(self._update_properties.values()))),
					encode_json=False, response_id=False
)
				logger.debug('UI Properties send and reloaded')
			except Exception as e:
				logger.warning('Can\'t send UI Properties! Error: {}'.format(str(e)))
				return

 pyplanet.core.ui.components.manialink

 Source code for pyplanet.core.ui.components.manialink

import asyncio
import uuid
import logging

from asyncio import iscoroutinefunction

from pyplanet.core.events import SignalManager
from pyplanet.core.ui.exceptions import ManialinkMemoryLeakException
from pyplanet.core.ui.template import Template

logger = logging.getLogger(__name__)

class _ManiaLink:
	def __init__(
		self, manager=None, id=None, version='3', body=None, template=None, timeout=0, hide_click=False, data=None,
		player_data=None, disable_alt_menu=False, throw_exceptions=False, relaxed_updating=False,
):
		"""
		Create manialink (USE THE MANAGER CREATE, DONT INIT DIRECTLY!

		:param manager: Manager instance. use your app manager.
		:param id: Unique manialink id. Could be set later, must be set before displaying.
		:param version: Version of manialink.
		:param body: Body of manialink, not including manialink tags!!
		:param template: Template instance.
		:param timeout: Timeout to display, hide after the timeout is reached. Seconds.
		:param hide_click: Hide manialink when click is fired on button.
		:param data: Data to render. Could also be set later on or controlled separate from this instance.
		:param player_data: Dict with player login and for value the player specific variables. Dont fill this to have
		a global manialink instead of per person.
		:param throw_exceptions: Throw exceptions during handling and executing of action handlers.
		:param relaxed_updating: Relaxed updating will rate limit the amount of updates send to clients.
		:type manager: pyplanet.core.ui.AppUIManager
		:type template: pyplanet.core.ui.template.Template
		:type id: str
		:type version: str
		:type timeout: int
		"""
		self.manager = manager
		self.id = id or uuid.uuid4().hex
		self.version = version
		self.body = body
		self._template = template
		self.timeout = timeout
		self.hide_click = hide_click
		self.data = data if data and isinstance(data, dict) else dict()
		self.player_data = player_data if player_data and isinstance(player_data, dict) else dict()
		self.throw_exceptions = False
		self.disable_alt_menu = bool(disable_alt_menu)
		self.relaxed_updating = relaxed_updating

		self.receivers = dict()
		self._is_global_shown = False
		self._is_player_shown = dict() # Holds per player login a boolean if the ml is shown.

		self.__register_listener = False

	async def is_global(self):
		return not self.player_data or self.player_data.keys() == 0

	async def get_template(self):
		return self._template

	async def render(self, player_login=None, data=None, player_data=None, template=None):
		"""
		Render template. Will render template and return body.

		:param player_login: Render data only for player, set to None to globally render (and ignore player_data).
		:param data: Data to append.
		:param player_data: Data to append.
		:param template: Template instance to use.
		:type template: pyplanet.core.ui.template.Template
		:return: Body, rendered manialink + script.
		"""
		if data and isinstance(data, dict):
			self.data.update(data)
		if not player_data:
			player_data = self.player_data or dict()
		if template and isinstance(template, Template):
			self._template = template
		if not template:
			template = await self.get_template()
		if not isinstance(template, Template):
			raise Exception('Can\'t render, no template is given!')

		# PyPlanet Global data.
		global_data = dict(
			_game=self.manager.instance.game,
			_instance=self.manager.instance,
			_app=self.manager.app if hasattr(self.manager, 'app') else None,
)

		# Combine data (global + user specific).
		payload_data = global_data
		payload_data.update(self.data.copy())
		if player_login:
			payload_data.update(player_data.get(player_login, dict()))

		# Render and save in content.
		return await template.render(**payload_data)

	async def display(self, player_logins=None, **kwargs):
		"""
		Display the manialink. Will also render if no body is given. Will show per player or global. depending on
		the data given and stored!

		:param player_logins: Only display to the list of player logins given.
		"""
		if player_logins:
			for login in player_logins:
				self._is_player_shown[login] = True
		else:
			self._is_global_shown = True

		if not self.__register_listener:
			# Register handle
			SignalManager.listen('maniaplanet:manialink_answer', self.handle)
			self.__register_listener = True

		return await self.manager.send(self, player_logins, **kwargs)

	async def hide(self, player_logins=None):
		"""
		Hide manialink globally of only for the logins given in parameter.

		:param player_logins: Only hide for list of players, None for all players on the server.
		"""
		if player_logins:
			for login in player_logins:
				try:
					del self._is_player_shown[login]
				except:
					pass
		else:
			self._is_global_shown = False

		return await self.manager.hide(self, player_logins)

	def subscribe(self, action, target):
		"""
		Subscribe to a action given by the manialink.

		:param action: Action name.
		:param target: Target method.
		:return:
		"""
		if action not in self.receivers:
			self.receivers[action] = list()
		self.receivers[action].append(target)

	async def handle(self, player, action, values, **kwargs):
		if not action.startswith(self.id):
			return

		if not self._is_global_shown and player.login not in self._is_player_shown.keys():
			# Ignore if id is unique (uuid4)
			try:
				uuid.UUID(self.id, version=4)
			except:
				raise ManialinkMemoryLeakException(
					'Old view instance (ml-id: {}) is not yet destroyed, but is receiving player callbacks!, '
					'Make sure you are not removing old view instances with .destroy() and del variable! '
					'Potential Memory Leak!! Should be fixed asap!'.format(self.id)
)

		action_name = action[len(self.id)+2:]
		if action_name not in self.receivers:
			return await self.handle_catch_all(player, action_name, values)

		# Call receivers.
		for rec in self.receivers[action_name]:
			try:
				if iscoroutinefunction(rec):
					await rec(player, action, values)
				else:
					rec(player, action, values)
			except Exception as e:
				if self.throw_exceptions:
					raise
				else:
					logging.exception('Exception has been silenced in ManiaLink Action receiver:', exc_info=e)

	async def handle_catch_all(self, player, action, values, **kwargs):
		"""
		Override this class to handle all other actions related to this view/manialink.

		:param player: Player instance.
		:param action: Action name/string
		:param values: Values provided by the user client.
		:param kwargs: *
		"""
		pass

	async def destroy(self):
		"""
		Destroy the Manialink with it's handlers and references.
		Will also hide the Manialink for all users!
		"""
		try:
			SignalManager.get_signal('maniaplanet:manialink_answer').unregister(self.handle)
		except Exception as e:
			logging.exception(e)
		try:
			await self.manager.destroy(self)
		except:
			pass
		self.receivers = dict()
		self.data = None
		self.player_data = None

	def destroy_sync(self):
		"""
		Destroy the Manialink with it's handlers and references.
		Will also hide the Manialink for all users!

		This method is sync and will call a async method (destroying of the manialink at our players) async but will not
		be executed at the same time. Be aware with this one!
		"""
		try:
			SignalManager.get_signal('maniaplanet:manialink_answer').unregister(self.handle)
			asyncio.ensure_future(self.manager.destroy(self))
		except Exception as e:
			logging.exception(e)
		self.receivers = dict()
		self.data = None
		self.player_data = None

	def __del__(self):
		self.destroy_sync()

[docs]class StaticManiaLink(_ManiaLink):
	"""
	The StaticManiaLink is mostly used in PyPlanet for general views. Please use the ``View`` classes instead of this
	core ui component!
	"""
	pass

[docs]class DynamicManiaLink(_ManiaLink):
	"""
	The DynamicManiaLink is a special manialink with data-bindings and automatically updates via maniascript.
	Please use the ``View`` classes instead!

	.. warning ::

		This feature is not yet implemented.

	"""
	def __init__(self, id):
		super().__init__(id)
		raise NotImplementedError

 pyplanet.god.pool

 Source code for pyplanet.god.pool

import os
import time
import logging
import multiprocessing

from logging.handlers import QueueListener

from pyplanet.utils.livereload import LiveReload
from pyplanet.god import process

logger = logging.getLogger(__name__)

[docs]class EnvironmentPool:
	"""
	This class manages the pool instances for the current environment/installation.

	.. warning::

		You should not have to use this class in any moment!

	"""

	def __init__(self, pool_names, max_restarts=0, options=None):
		self.names = pool_names
		self.queue = multiprocessing.Queue()
		self.pool = dict()
		self.max_restarts = max_restarts
		self.options = options or dict()

		self.dog_path = os.curdir
		self.dog_handler = LiveReload(self)
		# self.dog_observer = Observer()
		# self.dog_observer.schedule(self.dog_handler, self.dog_path, recursive=True)

		if multiprocessing.get_start_method() != 'fork': # pragma: no cover
			root_logger = logging.getLogger()
			self.log_listener = QueueListener(self.queue, *root_logger.handlers)

		# TODO: Find out how to get the watchdog + livereload working on a later moment.
		# self.dog_observer.start()

		self._restarts = dict()

	@property
	def num_online(self):
		count = 0
		for proc in self.pool.values():
			if not proc.did_die:
				count += 1
		return count

[docs]	def populate(self):
		"""
		Populate the pool instance processes, (prepares the processes).
		"""
		for name in self.names:
			self.pool[name] = process.InstanceProcess(queue=self.queue, environment_name=name, options=self.options)
			self._restarts[name] = 0
		return self

[docs]	def start(self):
		"""
		Start all processes.
		"""
		for name, proc in self.pool.items():
			proc.start()

[docs]	def shutdown(self):
		"""
		Shutdown all processes.
		"""
		for name, proc in self.pool.items():
			logger.info('Shutting down {}...'.format(name))
			if 'detach' in self.options and self.options['detach']:
				proc.shutdown()
			else:
				proc.graceful()

		# self.dog_observer.stop()

[docs]	def restart(self, name=None):
		"""
		Restart single process, or all if no name is given.

		:param name: Name or none for all pools.
		"""
		if name:
			self.pool[name] = process.InstanceProcess(queue=self.queue, environment_name=name)
			self._restarts[name] += 1
			self.pool[name].start()
		else:
			for name in self.pool.keys():
				self.restart(name)

[docs]	def watchdog(self):
		"""
		Watch all the processes. (Blocking method!).
		"""
		logger.debug('Starting watchdog... watching {} instances'.format(len(self.pool)))

		while True:
			num_alive = 0
			for name, proc in self.pool.items():
				if proc.did_die:
					# Process wants a restart! = exit code 50.
					if proc.exitcode == 50:
						self.restart(name)
						# Make sure we don't kill our god at the end of the loop.
						num_alive = 1
					# Status changed from 'online' to 'offline'
					elif self._restarts[name] < self.max_restarts:
						logger.critical('The instance \'{}\' just died. We will restart the instance!'.format(name))
						self.restart(name)
						num_alive += 1
					else:
						logger.critical('The instance \'{}\' just died. We will not restart!'.format(name))
				else:
					num_alive += 1

			# Check if there are still processes alive.
			if num_alive == 0:
				logger.critical('All instances died. Quitting now...')
				exit(1)

			time.sleep(2)

 pyplanet.god.process

 Source code for pyplanet.god.process

import threading
import multiprocessing

from colorlog import ColoredFormatter

def _run(name, queue, options):
	"""
	The actual process that runs the separate controller instance.

	:param name: name of the process
	:param queue: Queue of the binding parent.
	:param options: Custom Options
	:type name: str
	"""
	from pyplanet.core.instance import Controller
	from pyplanet.utils.log import initiate_logger, QueueHandler
	import logging

	# Tokio Asyncio (EXPERIMENTAL).
	if 'tokio' in options and options['tokio'] is True:
		import asyncio
		import tokio
		policy = tokio.TokioLoopPolicy()
		asyncio.set_event_loop_policy(policy)
		asyncio.set_event_loop(tokio.new_event_loop())
		logging.warning('Using experimental Tokio Asyncio Loop!')

	# Logging to queue.
	if multiprocessing.get_start_method() != 'fork': # pragma: no cover
		initiate_logger()
		root_logger = logging.getLogger()
		formatter = ColoredFormatter(
			'%(log_color)s%(levelname)-8s%(reset)s %(yellow)s[%(threadName)s][%(name)s]%(reset)s %(blue)s%(message)s'
)
		queue_handler = QueueHandler(queue)
		queue_handler.setFormatter(formatter)
		root_logger.addHandler(queue_handler)

	logging.getLogger(__name__).info('Starting pool process for \'{}\'...'.format(name))

	# Setting thread name to our process name.
	threading.main_thread().setName(name)

	# Initiate instance.
	instance = Controller.prepare(name).instance
	instance._queue = queue

	# Start and loop instance.
	instance.start()

[docs]class InstanceProcess:
	"""
	The InstanceProcess is the encapsulation around the real controller instance.

	.. warning::

		This code is still being executed at the main process!!

	"""

	def __init__(self, queue, environment_name='default', pool=None, options=None):
		"""
		Create an environment process of the controller itself.

		:param queue: Queue to hook on.
		:param environment_name: Name of environment.
		:param pool: Pool.
		:param options: Custom options.
		:type queue: multiprocessing.Queue
		:type environment_name: str
		:type pool: multiprocessing.Pool
		:type options: dict
		"""
		self.queue = queue
		self.name = environment_name
		self.options = options or dict()

		self.max_restarts = 1
		self.restarts = 0

		self.process = multiprocessing.Process(target=_run, kwargs=dict(
			name=self.name,
			queue=self.queue,
			options=self.options,
))

		self.__last_state = True

	@property
	def did_die(self):
		"""
		Boolean determinating if the process did die.
		"""
		if not self.is_alive() and self.__last_state:
			self.__last_state = False
			return True
		return False

	@property
	def exitcode(self):
		"""
		Exit code of process.

		:return: Exit code.
		"""
		return self.process.exitcode

	@property
	def will_restart(self):
		"""
		Boolean: Is the process able to restart (not reached max_restarts).
		"""
		return self.restarts < self.max_restarts

[docs]	def is_alive(self):
		"""
		Call process method is_alive()
		"""
		return self.process.is_alive()

[docs]	def start(self):
		"""
		Start the process.
		"""
		return self.process.start()

[docs]	def shutdown(self):
		"""
		Shutdown (terminate) process.
		"""
		try:
			return self.process.terminate()
		except:
			pass
		return None

[docs]	def graceful(self):
		"""
		Graceful shutdown the process.
		"""
		self.process.join(timeout=10)

 pyplanet.utils.gbxparser

 Source code for pyplanet.utils.gbxparser

import io
import struct
from asyncio import iscoroutinefunction

import aiofiles

[docs]class GbxException(BaseException):
	"""
	Exception with parsing the Gbx file.
	"""
	pass

class _LookBackUtils:
	PREDEFINED_STRINGS = {
		11: 'Valley',
		12: 'Canyon',
		13: 'Lagoon',
		17: 'TMCommon',
		26: 'Stadium',
		202: 'Storm',
		299: 'SMCommon',
		10003: 'Common',
	}

	def __init__(self, buffer):
		self.buffer = buffer
		self.store = list()
		self.version = None

	async def read_string(self):
		length, = struct.unpack('<L', await self.buffer.read(4))
		return struct.unpack('<{}s'.format(length), await self.buffer.read(length))[0].decode()

	async def read_lookback_string(self):
		if self.version is None:
			# We should see the lookback version right now.
			self.version, = struct.unpack('<L', await self.buffer.read(4))
		# Get the index.
		idx, = struct.unpack('<L', await self.buffer.read(4))
		if idx == 0:
			return None

		# Check if this will be the first occurrence.
		if idx & 0xc0000000 != 0 and idx & 0x3fffffff == 0:
			value = await self.read_string()
			self.store.append(value)
			return value

		# Check if idx is telling us that it's empty.
		if idx == 0xffffffff:
			return ''

		# Check if it's a predefined value.
		if idx & 0x3fffffff == idx:
			return self.PREDEFINED_STRINGS[idx]

		# Get from local store.
		idx &= 0x3fffffff
		if idx - 1 >= len(self.store):
			raise GbxException('String not found in lookback list!. Offset: {}'.format(await self.buffer.tell))
		return self.store[idx - 1]

	def reset(self):
		if self.version:
			self.store = list()
			self.version = None

class _AsyncBufferProxy:
	def __init__(self, buffer):
		"""
		:param buffer: Buffer
		:type buffer: io.BufferedIOBase
		"""
		self.buffer = buffer

	async def read(self, size=1):
		return self.buffer.read(size)

	async def seek(self, offset, whence=io.SEEK_CUR):
		return self.buffer.seek(offset, whence)

	async def tell(self):
		return self.buffer.tell()

[docs]class GbxParser:
	"""
	Async GBX Map Information Parser.

	Author: Toffe.
	"""

	def __init__(self, file=None, buffer=None):
		"""
		Initiate a parser with either a file path or buffer.

		:param file: File path.
		:param buffer: Buffer
		:type file: str
		"""
		super().__init__()
		if file and not isinstance(file, str):
			raise Exception('File should be a string, pointing to the file you want to load.')
		if not file and not buffer:
			raise Exception('File or buffer is required!')
		self.file = file

		if buffer:
			if iscoroutinefunction(buffer.read):
				self.buffer = buffer
			else:
				self.buffer = _AsyncBufferProxy(buffer)
		else:
			self.buffer = _AsyncBufferProxy(buffer)
		self.strings = _LookBackUtils(self.buffer)

		self.result = dict()

		self.header = None
		self.header_xml = None
		self.header_length = 0
		self.header_chunk_count = 0
		self.header_chunks = dict()

		self.parse_thumb = False
		self.parse_header_xml = False

[docs]	async def seek(self, offset):
		"""
		We need to override the second param to move from the current position.

		:param offset: offset to move away.
		:type offset: int
		"""
		return await self.buffer.seek(offset, io.SEEK_CUR)

	async def parse(self, thumb=False, header_xml=False):
		self.parse_thumb = thumb
		self.parse_header_xml = header_xml

		if self.file:
			async with aiofiles.open(self.file, mode='rb') as self.buffer:
				self.strings = _LookBackUtils(self.buffer)
				return await self.__parse()
		elif self.buffer:
			return await self.__parse()
		raise Exception('No buffer or file given at init.')

	async def __parse(self):
		# Skip until class reference.
		await self.seek(9)
		# Read class ID.
		class_id, = struct.unpack('<I', await self.buffer.read(4))
		if class_id != ((0x3 << 24) | (0x43 << 12)):
			raise GbxException('Gbx file has no valid parser, only maps are supported right now.')

		self.result.update(await self.__parse_header())

		return self.result

	async def __parse_header(self):
		self.header_length, = struct.unpack('<I', await self.buffer.read(4))
		self.header_chunk_count, = struct.unpack('<I', await self.buffer.read(4))

		self.header_chunks = dict()
		self.header = dict()

		# Save header data from binary.
		for nr in range(self.header_chunk_count):
			chunk_id, = struct.unpack('<I', await self.buffer.read(4))
			chunk_size, = struct.unpack('<I', await self.buffer.read(4))
			self.header_chunks[chunk_id] = chunk_size & ~0x80000000

		# Parse all header chunks.
		for chunk_id, chunk_size in self.header_chunks.items():
			self.strings.reset()
			self.header.update(await self.__parse_chunk(chunk_id, chunk_size))

		return self.header

	async def __parse_chunk(self, chunk_id, chunk_size):
		if chunk_id == 0x03043002:
			version, = struct.unpack('<B', await self.buffer.read(1))
			await self.seek(4)
			time_bronze, time_silver, time_gold, time_author = struct.unpack('<LLLL', await self.buffer.read(16))
			price, is_multilap, map_type = struct.unpack('<LLL', await self.buffer.read(12))
			is_multilap = True if is_multilap == 1 else False
			await self.seek(4)
			author_score, editor = struct.unpack('<LL', await self.buffer.read(8))
			editor = 'simple' if editor == 1 else 'advanced'
			await self.seek(4)
			checkpoints, laps = struct.unpack('<LL', await self.buffer.read(8))
			return dict(
				time_bronze=time_bronze, time_silver=time_silver, time_gold=time_gold, time_author=time_author,
				price=price, is_multilap=is_multilap, map_type=map_type, author_score=author_score, editor=editor,
				checkpoints=checkpoints, laps=laps
)

		elif chunk_id == 0x03043003:
			version, = struct.unpack('<B', await self.buffer.read(1))
			uid = await self.strings.read_lookback_string()
			environment = await self.strings.read_lookback_string()
			author_login = await self.strings.read_lookback_string()
			name = await self.strings.read_string()
			await self.seek(5)
			await self.strings.read_string() # Unknown, mostly empty.
			mood = await self.strings.read_lookback_string()
			decoration_env_id = await self.strings.read_lookback_string()
			decoration_env_author = await self.strings.read_lookback_string()
			await self.seek(4*4+16)
			map_type = await self.strings.read_string()
			map_style = await self.strings.read_string()
			await self.seek(9)
			title_id = await self.strings.read_lookback_string()
			return dict(
				uid=uid, environment=environment, author_login=author_login, name=name, mood=mood,
				decoration_env_id=decoration_env_id, decoration_env_author=decoration_env_author,
				map_type=map_type, map_style=map_style, title_id=title_id
)

		elif chunk_id == 0x03043004:
			version, = struct.unpack('<B', await self.buffer.read(1))
			await self.seek(chunk_size - 1)

		elif chunk_id == 0x03043005:
			self.header_xml = await self.strings.read_string()

		elif chunk_id == 0x03043007:
			has_thumb = bool(struct.unpack('<L', await self.buffer.read(4))[0])
			comment = None
			thumb = None
			if has_thumb:
				thumb_size, = struct.unpack('<L', await self.buffer.read(4))
				await self.seek(15) # Skip XML thumb tag.
				if self.parse_thumb:
					thumb = struct.unpack('<{}s'.format(thumb_size), await self.buffer.read(thumb_size))[0].decode()
				else:
					await self.seek(thumb_size)
				await self.seek(16 + 10) # </Thumbnail.jpg></Comments>

				comment_size, = struct.unpack('<L', await self.buffer.read(4))
				if comment_size > 0:
					comment = struct.unpack('<{}s'.format(comment_size), await self.buffer.read(comment_size))[0].decode()
				await self.seek(11) # </Comments>
			else:
				await self.seek(chunk_size - 4)

			return dict(has_thumb=has_thumb, thumb=thumb, comment=comment)

		elif chunk_id == 0x03043008:
			version, = struct.unpack('<L', await self.buffer.read(4))
			author_version, = struct.unpack('<L', await self.buffer.read(4))
			author_login = await self.strings.read_string()
			author_nickname = await self.strings.read_string()
			author_zone = await self.strings.read_string()
			author_extra = await self.strings.read_string()
			return dict(
				author_version=author_version, author_login=author_login, author_nickname=author_nickname,
				author_zone=author_zone, author_extra=author_extra
)
		return dict()

 pyplanet.utils.style

 Source code for pyplanet.utils.style

import re
import struct

import binascii

STRIP_ALL = dict(letters='wnoitsgz<>', part=r'\$[lh]\[.+\]|\$[lh]|\$[0-9a-f]{3}')
"""
Strip all custom maniaplanet styles + formatting.
"""

STRIP_COLORS = dict(letters='g', part=r'\$[0-9a-f]{3}')
"""
Strip colors from your input (including $g, color reset).
"""

STRIP_SIZES = dict(letters='wnoiz')
"""
Strip all size and adjustments styles ($w $n $o $i $z).
"""

STRIP_SHADOWS = dict(letters='s')
"""
Strip shadow style ($s).
"""

STRIP_CAPITALS = dict(letters='t')
"""
Strip capital style ($t).
"""

STRIP_LINKS = dict(part=r'\$[lh]\[.+\]|\$[lh]')
"""
Strip links ($h and $l).
"""

[docs]def style_strip(text, *strip_methods, strip_styling_blocks=True, keep_reset=False, keep_color_reset=False):
	"""
	Strip styles from the Maniaplanet universe.

	Examples:
	
	.. code-block:: python

		print("--- Strip: colours ---")
		print(style_strip("ifffMax$06fSmurf$f00.$fffes$$l$09f.$fffm$08f$a5xnw$o", STRIP_COLORS))
		print(style_strip("$l[some link]$i$FFFMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx$l", STRIP_COLORS))
		print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx", STRIP_COLORS))
		print("--- Strip: links ---")
		print(style_strip("li$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x$l", STRIP_LINKS))
		print(style_strip("ifffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x", STRIP_LINKS))
		print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffes$$l$09f.$fffm$08fx$l", STRIP_LINKS))
		print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx", STRIP_LINKS))
		print("--- Strip: sizes ---")
		print(style_strip("in$fffMax$06fSmurf$f00.$wofffe$$nsl$09f.$w$fffm$08f$a5$ox", STRIP_SIZES))
		print("--- Strip: everything ---")
		print(style_strip("hi$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x$h", STRIP_ALL))
		print(style_strip("$l[some link]$i$fffMax$06fSmur$$f$f00.$fffesl$09f.$fffm$08fx$l"))
		print(style_strip("$l[some link]$i$fffMax$06fSmunrff00.$fffesl$09f.$fffm$08fx"))
		# Other stuff.:
		print(style_strip("$l[some link]$i$fffMax$06fSmunrff00.$fffesl$09f.$fffm$08fx", STRIP_CAPITALS, STRIP_SHADOWS))

	.

	:param text: The input string text.
	:param strip_methods: Methods for stripping, use one of the STRIP_* constants or leave undefined to strip everything.
	:param strip_styling_blocks: Strip all styling blocks ($> and $<)
	:param keep_reset: Keep full resets ($z).
	:param keep_color_reset: Keep color resets ($g).
	:type text: str
	:type strip_styling_blocks: bool
	:type keep_reset: bool
	:type keep_color_reset: bool
	:return: Stripped style string.
	:rtype: str
	"""
	if not strip_methods:
		strip_methods = [STRIP_ALL]
	regex = None
	letters = ''
	parts = []
	for payload in strip_methods:
		if isinstance(payload, str):
			regex = payload
			break
		elif isinstance(payload, dict):
			if 'letters' in payload:
				letters += payload['letters']
			if 'part' in payload:
				parts.append(payload['part'])

	if keep_reset:
		letters = letters.replace('z', '')
	if keep_color_reset:
		letters = letters.replace('g', '')
	if strip_styling_blocks:
		letters += '<>'

	if not regex:
		regex = r'(\$[{letters}]{parts})+'.format(
			letters=letters,
			parts='|{}'.format('|'.join(parts)) if len(parts) > 0 else ''
)

	# Strip and return.
	return re.sub(regex, '', text, flags=re.IGNORECASE)

def percentage_color(percentage): # pragma: no cover
	red = (255 * percentage) / 100
	green = (255 * (100 - percentage)) / 100
	return int(abs(255-red)), int(abs(255-green)), 0

def rgb_to_hex(rgb): # pragma: no cover
	return '%02x%02x%02x' % rgb

 pyplanet.utils.times

 Source code for pyplanet.utils.times

import math

[docs]def format_time(time, hide_hours_when_zero=True, hide_milliseconds=False):
	"""
	Format time from integer milliseconds to string format that could be displayed to the end-user.
	
	:param time: Integer time in milliseconds.
	:type time: int
	:param hide_hours_when_zero: Hide the hours when there are zero hours.
	:type hide_hours_when_zero: bool
	:param hide_milliseconds: Hide the milliseconds.
	:type hide_milliseconds: bool
	:return: String output
	:rtype: str
	"""
	hours = math.floor((time / 1000 / 60 / 60))
	minutes = math.floor((time - (hours * 60 * 60 * 1000)) / 1000 / 60)
	seconds = math.floor((time - (hours * 60 * 60 * 1000) - (minutes * 60 * 1000)) / 1000)
	millis = (time - (hours * 60 * 60 * 1000) - (minutes * 60 * 1000) - (seconds * 1000))

	formatted_time = ''
	if hours > 0 or not hide_hours_when_zero:
		formatted_time += '{:02d}:{:02d}:'.format(hours, minutes)
	else:
		formatted_time += '{}:'.format(str(minutes))
	if hide_milliseconds:
		return formatted_time + '{:02d}'.format(seconds)
	return formatted_time + '{:02d}.{:03d}'.format(seconds, millis)

 pyplanet.views.base

 Source code for pyplanet.views.base

from pyplanet.core.ui.components.manialink import StaticManiaLink

[docs]class View(StaticManiaLink):
	"""
	Base view. The base view will inherit from ``StaticManiaLink`` class.
	"""
	pass

 pyplanet.views.template

 Source code for pyplanet.views.template

import asyncio
import logging

from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.core import Controller
from pyplanet.core.ui.template import load_template
from pyplanet.utils.codeutils import deprecated
from pyplanet.views.base import View

[docs]class TemplateView(View):
	"""
	The TemplateView will provide a view based on a XML template (ManiaLink for example).
	The view contains some class properties that are required to work. Those are described bellow.

	To use the TemplateView. Initiate it in your own View class, and override one of the following methods:

	:method get_context_data(): Return the global context data here.
								Make sure you use the super() to retrieve the current context.
	:method get_all_player_data(logins): Retrieve the player specific dictionary.
										Return dict with player as key and value should contain the data dict.
	:method get_per_player_data(login): Retrieve the player specific dictionary per player.
										Return dict with the data dict for the specific login (player).
	:method get_template(): Return the template instance from Jinja2. You mostly should not override this method.

	As alternative you can manipulate the instance.data and instance.player_data too.

	Properties that are useful to change:

	:prop data: Global context data. Dict.
	:prop player_data: Player context data. Dict with player as key.
	:prop hide_click: Should the manialink disappear after clicking a button/text.
	:prop timeout: Timeout to hide manialink in seconds.

	Example usage:

	.. code-block:: python

		class AlertView(TemplateView):
			template_name = 'my_app/test.xml' # template should be in: ./my_app/templates/test.xml
			# Some prefixes that can be used in the template_name:
			#
			# - core.views: ``pyplanet.views.templates``.
			# - core.pyplanet: ``pyplanet.apps.core.pyplanet.templates``.
			# - core.maniaplanet: ``pyplanet.apps.core.pyplanet.templates``.
			# - core.trackmania: ``pyplanet.apps.core.trackmania.templates``.
			# - core.shootmania: ``pyplanet.apps.core.shootmania.templates``.
			# - [app_label]: ``[app path]/templates``.

			async def get_context_data(self):
				context = await super().get_context_data()
				context['title'] = 'Sample'
				return context

	"""

	template_name = None

[docs]	async def get_context_data(self):
		"""
		Get global and local context data, used to render template.
		"""
		context = dict(
			id=self.id,
)
		return context

[docs]	@deprecated
	async def get_player_data(self):
		"""
		Get data per player, return dict with login => data dict.

		.. deprecated:: 0.4.0
			Use :func:`get_per_player_data` and :func:`get_all_player_data` instead. Will be removed in 0.8.0!

		"""
		return dict()

[docs]	async def get_all_player_data(self, logins):
		"""
		Get all player data, should return dictionary with login as key, and dict as value.

		:param logins: Login list of players. String list.
		:return: Dictionary with data.
		"""
		return dict()

[docs]	async def get_per_player_data(self, login):
		"""
		Get data for specific player. Will be called for all players that will render the xml for.

		:param login: Player login string.
		:return: Dictionary or None to ignore.
		:type login: str
		"""
		return dict()

	async def get_template(self):
		return await load_template(self.template_name)

[docs]	async def render(self, *args, player_login=None, **kwargs):
		"""
		Render template for player. This will only render the body and return it. Not send it!

		:param player_login: Render data only for player, set to None to globally render (and ignore player_data).
		:return: Body, rendered manialink + script.
		"""
		kwargs['data'] = await self.get_context_data()
		kwargs['player_login'] = player_login
		kwargs['player_data'] = self.player_data # Should already been read by display().
		kwargs['template'] = await self.get_template()
		return await super().render(*args, **kwargs)

[docs]	async def display(self, player_logins=None, **kwargs):
		"""
		Display the manialink. Will also render if no body is given. Will show per player or global. depending on
		the data given and stored!

		:param player_logins: Only display to the list of player logins given.
		"""
		# Get player data (old way). Deprecated since 0.4.0.
		# Added warning since 0.8.0.
		self.player_data = deprecated_data = await self.get_player_data()
		# COMMENTED IN 0.8.2: FAST FIX.
		# if deprecated_data and len(deprecated_data.keys()) > 0:
			# logging.getLogger(self.__class__.__module__ + '.' + self.__class__.__name__).warning(
			# 	'Method \'get_player_data\' is deprecated and will be removed soon! Please refactor your code!'
			#)
			# self.player_data = deprecated_data

		self.player_data.update(await self.get_all_player_data(
			player_logins or [p.login for p in Controller.instance.player_manager.online]
))

		# Get player data (new way).
		async def get_player_data(login):
			data = await self.get_per_player_data(login)
			if not data or isinstance(data, dict) and len(data.keys()) == 0:
				data = None
			return login, data

		player_data = await asyncio.gather(*[
			get_player_data(p.login) if isinstance(p, Player) else get_player_data(p)
			for p in player_logins or Controller.instance.player_manager.online
])

		# TODO: This can be flatten with `self.player_data = dict(player_data)` after deprecated code has been removed.
		for login, data in player_data:
			if not isinstance(data, dict) or len(data.keys()) == 0:
				continue
			if login in self.player_data and isinstance(self.player_data[login], dict):
				self.player_data[login].update(data)
			else:
				self.player_data[login] = data

		# Fallback in case the data is empty or not a dictionary.
		if not isinstance(self.player_data, dict):
			self.player_data = dict()

		return await super().display(player_logins, **kwargs)

 pyplanet.views.generics.alert

 Source code for pyplanet.views.generics.alert

import asyncio
import re

from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.views import TemplateView

[docs]class AlertView(TemplateView):
	"""
	The AlertView can be used to show several generic alerts to a player. You can use 3 different sizes, and adjust the
	message text.

	The 3 sizes:
	sm, md and lg.
	"""

	template_name = 'core.views/generics/alert.xml'

	SIZES = dict(
		sm={
			'top__pos': '0 17',
			'top__size': '126.5 8',
			'box__size': '120 25',
			'bottom__pos': '0 -12',
			'bottom__size': '120 2',
			'text__pos': '-47.5 6.25',
			'text__size': '100 4',
			'button_0__pos__left': -32,
			'button_0__pos__top': -4,
			'button_1__pos__left': 32,
			'button_1__pos__top': -4,
		},
		md={
			'top__pos': '0 30',
			'top__size': '156.5 8',
			'box__size': '150 50',
			'bottom__pos': '0 -24',
			'bottom__size': '150 2',
			'text__pos': '-67.5 6.25',
			'text__size': '135 24',
			'button_0__pos__left': -32,
			'button_0__pos__top': -14,
			'button_1__pos__left': 32,
			'button_1__pos__top': -14,
		},
		lg={
			'top__pos': '0 55',
			'top__size': '206.5 8',
			'box__size': '200 100',
			'bottom__pos': '0 -50',
			'bottom__size': '200 2',
			'text__pos': '-92.5 6.25',
			'text__size': '185 74',
			'button_0__pos__left': -52,
			'button_0__pos__top': -40,
			'button_1__pos__left': 52,
			'button_1__pos__top': -40,
		},
)

[docs]	def __init__(
		self, message, size='md', buttons=None, manager=None, target=None, **data
):
		"""
		Create an AlertView instance.

		:param message: The message to display to the end-user, Use ``\\n`` for new lines. You can use symbols from FontAwesome
						by using Unicode escaped strings.
		:param size: Size to use, this parameter should be a string, and one of the following choices:
					 'sm', 'md' or 'lg. Defaults to 'md'.
		:param buttons: Buttons to display, Should be an array with dictionary which contain: name.
		:param manager: UI Manager to use, You should always keep this undefined unless you know what your doing!
		:param target: Target coroutine method called as handle of button clicks.

		:type message: str
		:type title: str
		:type size: str
		:type buttons: list
		:type manager: pyplanet.core.ui._BaseUIManager
		"""
		from pyplanet.core import Controller

		super().__init__(manager or Controller.instance.ui_manager)
		self.disable_alt_menu = True
		sizes = self.SIZES[size]

		if not buttons:
			buttons = [{'name': 'OK'}]

		self.target = target
		self.response_future = asyncio.Future()

		self.data = dict(
			message=message,
			buttons=buttons,
			sizes=sizes,
)
		self.data.update(data)

[docs]	async def wait_for_reaction(self): # pragma: no cover
		"""
		Wait for reaction or input and return it.

		:return: Returns the button clicked or the input value string of the user.
		"""
		return await self.response_future

	async def handle(self, player, action, values, **kwargs): # pragma: no cover
		await self.close(player)

		# Try to parse the button id instead of the whole action string.
		button = action
		try:
			match = re.search('button_([0-9]+)$', action)
			if len(match.groups()) == 1:
				button = match.group(1)
		except:
			pass

		if not self.response_future.done():
			self.response_future.set_result(button)

		if self.target:
			await self.target(player, action, values, **kwargs)

[docs]	async def close(self, player, **kwargs): # pragma: no cover
		"""
		Close the alert.
		"""
		await self.hide(player_logins=[player.login])

[docs]class PromptView(AlertView):
	"""
	The PromptView is like the AlertView but can ask for a text entry.

	The 3 sizes:
	sm, md and lg.

	You can listen for the results of the players input with the ``wait_for_input()`` async handler (future).
	Example:

	.. code-block:: python

		prompt = PromptView('Please enter your name')
		await prompt.display(['login'])

		user_input = await prompt.wait_for_input()
		print(user_input)

	You can do validations before it's okay with giving a function to the argument ``validator``. Example:

	.. code-block:: python

		def my_validator(value):
			try:
				int(value)
				return True, None
			except:
				return False, 'Value should be an integer!'

		prompt = PromptView('Please enter your name', validator=my_validator)
		await prompt.display(['login'])

		user_input = await prompt.wait_for_input()
		print(user_input)

	"""

	template_name = 'core.views/generics/prompt.xml'

	SIZES = dict(
		sm={
			'top__pos': '0 24',
			'top__size': '126.5 8',
			'box__size': '120 40',
			'bottom__pos': '0 -20',
			'bottom__size': '120 2',
			'text__pos': '-47.5 11',
			'text__size': '100 4',
			'input__pos': '0 0',
			'input__size': '100 7',
			'button_0__pos__left': -32,
			'button_0__pos__top': -12,
			'button_1__pos__left': 32,
			'button_1__pos__top': -12,
		},
		md={
			'top__pos': '0 38',
			'top__size': '156.5 8',
			'box__size': '150 67',
			'bottom__pos': '0 -34',
			'bottom__size': '150 2',
			'text__pos': '-67.5 11',
			'text__size': '135 24',
			'input__pos': '0 -10',
			'input__size': '135 7',
			'button_0__pos__left': -32,
			'button_0__pos__top': -24,
			'button_1__pos__left': 32,
			'button_1__pos__top': -24,
		},
		lg={
			'top__pos': '0 67',
			'top__size': '206.5 8',
			'box__size': '200 125',
			'bottom__pos': '0 -62',
			'bottom__size': '200 2',
			'text__pos': '-92.5 11',
			'text__size': '185 74',
			'input__pos': '0 -40',
			'input__size': '185 7',
			'button_0__pos__left': -52,
			'button_0__pos__top': -52,
			'button_1__pos__left': 52,
			'button_1__pos__top': -52,
		},
)

[docs]	def __init__(self, message, size='md', buttons=None, manager=None, default='', validator=None):
		super().__init__(message, size, buttons, manager)
		self.disable_alt_menu = True

		self.default = default
		self.validator = validator or self.validate_input

		self.data['default'] = self.default

[docs]	async def wait_for_input(self): # pragma: no cover
		"""
		Wait for input and return it.

		:return: Returns the string value of the user.
		"""
		return await self.response_future

	def validate_input(self, value): # pragma: no cover
		if not value or len(value) == 0:
			return False, 'Empty value given!'
		return True, None

	async def handle(self, player, action, values, **kwargs): # pragma: no cover
		self.data['errors'] = ''
		value = self.default
		if 'prompt_value' in values:
			value = values['prompt_value']

		valid, message = self.validator(value)

		if valid:
			await self.close(player)
			if not self.response_future.done():
				self.response_future.set_result(value)
			return

		self.data['errors'] = message
		await self.display([player.login])

Util methods.
[docs]async def ask_confirmation(player, message, size='md', buttons=None): # pragma: no cover
	"""
	Ask the player for confirmation and return the button number (0 is first button).

	:param player: Player login or instance.
	:param message: Message to display.
	:param size: Size, could be 'sm', 'md', or 'lg'.
	:param buttons: Buttons, optional, default is yes and no.
	:return: Number of button that is clicked.
	"""
	buttons = buttons or [{'name': 'Yes'}, {'name': 'No'}]
	view = AlertView(message, size, buttons)
	if isinstance(player, Player):
		player = player.login
	await view.display(player_logins=[player])
	reaction = await view.wait_for_reaction()
	try:
		reaction = int(reaction)
	except:
		reaction = None
	del view
	return reaction

[docs]async def ask_input(player, message, size='md', buttons=None, default=None, validator=None): # pragma: no cover
	"""
	Ask the player a question and prompt for input.

	:param player: Player login or instance.
	:param message: Message to display.
	:param size: Size, could be 'sm', 'md', or 'lg'
	:param buttons: Buttons, optional, default is ok.
	:param default: The default and pre-filled value. Default empty.
	:param validator: Validator method, default is only checking if the input isn't empty.
	:return: Input given by the user.
	"""
	buttons = buttons or [{'name': 'OK'}]
	view = PromptView(message, size, buttons, default=default, validator=validator)
	if isinstance(player, Player):
		player = player.login
	await view.display(player_logins=[player])
	output = await view.wait_for_input()
	del view
	return output

[docs]async def show_alert(player, message, size='md', buttons=None): # pragma: no cover
	"""
	Show an alert to the player with given details. This is a shortcut method for the class itself.

	:param player: Player login or instance.
	:param message: Message in string.
	:param size: Size, could be 'sm', 'md', or 'lg'.
	:param buttons: Buttons, optional, default is 'OK'.
	:return: Number of the clicked button. (in Future).
	"""
	buttons = buttons or [{'name': 'OK'}]
	view = AlertView(message, size, buttons)
	if isinstance(player, Player):
		player = player.login
	await view.display(player_logins=[player])
	reaction = await view.wait_for_reaction()
	try:
		reaction = int(reaction)
	except:
		reaction = None
	del view
	return reaction

 pyplanet.views.generics.list

 Source code for pyplanet.views.generics.list

import math
import re
import logging
import pandas as pd
import numpy as np

from asyncio import iscoroutinefunction
from peewee import Field

from pyplanet.utils import style

from pyplanet.apps.core.maniaplanet.models import Player
from pyplanet.core.db import Model
from pyplanet.views.template import TemplateView

logger = logging.getLogger(__name__)

[docs]class ListView(TemplateView):
	"""
	The ListView is an abstract list that uses a database query to show and manipulate the list that is presented to the
	end-user. The ListView is able to automatically manage the searching, ordering and pagination of your query contents.

	The columns could be specified, for each column you can change behaviour, such as searchable and sortable. But also
	custom rendering of the values that will be displayed.

	You can override ``get_fields()``, ``get_actions()``, ``get_query()`` if you need any customization or use a self method
	or variable in one of your properties.

	.. note::

		The design and some behaviour can change in updates of PyPlanet. We aim to provide backward compatibility as much
		as we can. If we are going to break things we will make it deprecated, or if we are in a situation of not having
		enough time to provide a transition time, we are going to create a separate solution (like a second version).

	.. code-block:: python

		class SampleListView(ListView):
			query = Model.select()
			model = Model
			title = 'Select your item'
			fields = [
				{'name': 'Name', 'index': 'name', 'searching': True, 'sorting': True},
				{'name': 'Author', 'index': 'author', 'searching': True, 'sorting': True},
]
			actions = [
				{
					'name': 'Delete',
					'action': self.action_delete,
					'style': 'Icons64x64_1',
					'substyle': 'Close'
				},
]

			async def action_delete(self, player, values, instance, **kwargs):
				print('Delete value: {}'.format(instance))

	"""
	query = None
	model = None

	title = None
	icon_style = None
	icon_substyle = None
	fields = []
	actions = []
	buttons = []

	template_name = 'core.views/generics/list.xml'

	single_list = True
	"""Change this to False to have multiple lists open at the same time."""

[docs]	def __init__(self, *args, **kwargs):
		self.id = 'pyplanet.views.generics.list.ListView'
		super().__init__(*args, **kwargs)
		self.disable_alt_menu = True
		self.search_text = None
		self.sort_field = None
		self.sort_order = 1
		self.page = 1
		self.count = 0
		self.objects = list()

		self.num_per_page = 20

		self.provide_search = True

		# Setup the receivers.
		self.subscribe('list_button_close', self.close)
		self.subscribe('list_button_refresh', self.refresh)
		self.subscribe('list_button_search', self._search)

		self.subscribe('list_button_first', self._first_page)
		self.subscribe('list_button_prev_10', self._prev_10_pages)
		self.subscribe('list_button_prev', self._prev_page)
		self.subscribe('list_button_next', self._next_page)
		self.subscribe('list_button_next_10', self._next_10_pages)
		self.subscribe('list_button_last', self._last_page)

	@property
	def order(self):
		if self.sort_field and isinstance(self.sort_field, Field):
			if self.sort_order and self.sort_field:
				return self.sort_field
			elif not self.sort_order and self.sort_field:
				return -self.sort_field
		elif self.sort_field:
			return self.sort_field
		return None

[docs]	async def handle_catch_all(self, player, action, values, **kwargs):
		# Sorting the column:
		if action.startswith('list_header_'):
			match = re.search('^list_header_([0-9]+)$', action)
			if len(match.groups()) != 1:
				return

			try:
				col = int(match.group(1))
				fields = await self.get_fields()
				field = fields[col]
			except Exception as e:
				logger.error('Got invalid result in list column click: {}'.format(e))
				return

			# Check if sorting is defined + true.
			if 'sorting' not in field or not field['sorting'] or not field['index']:
				return

			# Sort on column
			if isinstance(self.model, Model):
				sort_field = getattr(self.model, field['index'])
				current_field_name = self.sort_field.db_column if self.sort_field else None
				field_name = sort_field.db_column
			else:
				sort_field = field
				current_field_name = self.sort_field['index'] if self.sort_field else None
				field_name = sort_field['index']

			if self.sort_field and current_field_name == field_name:
				if self.sort_order == 1:
					self.sort_order = 0
				else:
					# Unsort. clear sorting
					self.sort_field = None
					self.sort_order = 0
			else:
				self.sort_field = sort_field
				self.sort_order = 1

			# Refresh list
			await self.refresh(player)

		elif action.startswith('list_body_') or action.startswith('list_action_'):
			if action.startswith('list_body_'):
				match = re.search('^list_body_([0-9]+)_([0-9]+)$', action)
				trigger = 'body'
			else:
				match = re.search('^list_action_([0-9]+)_([0-9]+)$', action)
				trigger = 'action'
			if len(match.groups()) != 2:
				return

			try:
				row = int(match.group(1))
				idx = int(match.group(2))
				if trigger == 'body':
					field = (await self.get_fields())[idx]
				else:
					field = (await self.get_actions())[idx]
				action = field['action']
				instance = self.objects[row]
			except Exception as e:
				logger.warning('Got invalid result in list item click: {}'.format(str(e)))
				return

			# Execute action/target method.
			if iscoroutinefunction(action):
				await action(player, values, instance, view=self)
			else:
				action(player, values, instance, view=self)

		elif action.startswith('list_buttons_'):
			match = re.search('^list_buttons_([0-9]+)$', action)

			if len(match.groups()) != 1:
				return

			try:
				button = int(match.group(1))
				field = (await self.get_buttons())[button]
				action = field['action']
			except Exception as e:
				logger.warning('Got invalid result in list item click: {}'.format(str(e)))
				return

			# Execute action/target method.
			if iscoroutinefunction(action):
				await action(player, values, view=self)
			else:
				action(player, values, view=self)

	@property
	def num_pages(self):
		return int(math.ceil(self.count / self.num_per_page))

[docs]	async def close(self, player, *args, **kwargs):
		"""
		Close the link for a specific player. Will hide manialink and destroy data for player specific to save memory.

		:param player: Player model instance.
		:type player: pyplanet.apps.core.maniaplanet.models.Player
		"""
		if self.player_data and player.login in self.player_data:
			del self.player_data[player.login]
		await self.hide(player_logins=[player.login])

		if self.single_list:
			# Clear the lock on the player list display.
			player.attributes.set('pyplanet.views.list_displayed', None)

[docs]	async def refresh(self, player, *args, **kwargs):
		"""
		Refresh list with current properties for a specific player. Can be used to show new data changes.

		:param player: Player model instance.
		:type player: pyplanet.apps.core.maniaplanet.models.Player
		"""
		await self.display(player=player)

[docs]	async def display(self, player=None):
		"""
		Display list to player.

		:param player: Player login or model instance.
		:type player: str, pyplanet.apps.core.maniaplanet.models.Player
		"""
		login = player.login if isinstance(player, Player) else player
		if not player:
			raise Exception('No player/login given to display the list to!')

		# Check and close other list of user.
		if self.single_list:
			player = player if isinstance(player, Player) \
				else await self.manager.instance.player_manager.get_player(login=login, lock=False)
			other_list = player.attributes.get('pyplanet.views.list_displayed', None)
			if other_list and isinstance(other_list, str):
				# Try to get the other list instance.
				other_manialink = self.manager.instance.ui_manager.get_manialink_by_id(other_list)

				# Close other list and clear lock.
				if isinstance(other_manialink, ListView):
					await other_manialink.close(player)

			# Set lock on player.
			player.attributes.set('pyplanet.views.list_displayed', self.id)

		return await super().display(player_logins=[login])

	async def get_fields(self):
		return self.fields

	async def get_title(self):
		return self.title

	async def get_actions(self):
		return self.actions

	async def get_buttons(self):
		return self.buttons

	async def get_query(self):
		if self.query is not None:
			return self.query
		raise Exception('get_query() or self.query is empty! It should contain query that is not yet executed!')

	async def apply_filter(self, query):
		if not self.search_text:
			return query
		for field in self.fields:
			if 'searching' in field and field['searching']:
				query = query.orwhere(getattr(self.model, field['index']).contains(self.search_text))
		return query

	async def apply_ordering(self, query):
		if not self.order:
			return query
		return query.order_by(self.order)

	async def apply_pagination(self, query):
		# Get count before pagination.
		self.count = await self.model.objects.count(query)
		return query.paginate(self.page, self.num_per_page)

	async def get_object_data(self):
		query = await self.get_query()
		query = await self.apply_filter(query)
		query = await self.apply_ordering(query)
		query = await self.apply_pagination(query)
		self.objects = list(await self.model.execute(query))
		return {
			'objects': self.objects,
			'search': self.search_text,
			'order': self.order,
			'count': self.count,
		}

[docs]	async def get_context_data(self):
		context = await super().get_context_data()

		# Add dynamic data from query.
		context.update(await self.get_object_data())

		fields = await self.get_fields()
		actions = await self.get_actions()
		buttons = await self.get_buttons()

		# Process fields + actions (normalize)
		# Calculate positions of fields
		left = 0
		for field in fields:
			field['left'] = left
			left += field['width']
			if 'type' not in field:
				field['type'] = 'label'
			if 'safe' not in field:
				field['safe'] = False

			field['_sort'] = None
			if self.sort_field is not None and field['index'] == self.sort_field['index']:
				field['_sort'] = self.sort_order
		fields_width = int(left)

		left = 0
		for action in actions:
			action['left'] = left
			left += action['width'] if 'width' in action else 5
			if 'type' not in action:
				action['type'] = 'quad'
			if 'safe' not in action:
				action['safe'] = False
		actions_width = int(left)

		right = 215.5
		for button in buttons:
			button['right'] = (right - button['width'] / 2)
			right -= button['width'] + 3

		# Add facts.
		context.update({
			'field_renderer': self._render_field,
			'fields': fields,
			'actions': actions,
			'buttons': buttons,
			'provide_search': self.provide_search,
			'title': await self.get_title(),
			'icon_style': self.icon_style,
			'icon_substyle': self.icon_substyle,
			'search': self.search_text,
			'pages': self.num_pages,
			'page': self.page,
			'fields_width': fields_width,
			'actions_width': actions_width,
		})

		return context

	def _render_field(self, row, field):
		if 'renderer' in field:
			return field['renderer'](row, field)
		if isinstance(row, dict):
			return str(row[field['index']])
		else:
			return str(getattr(row, field['index']))

	async def _search(self, player, _, values, *args, **kwargs):
		search_text = values['list_search_field']
		if len(search_text) > 0 and search_text != 'Search...':
			self.search_text = search_text
		else:
			self.search_text = None
		# Reset page when searching
		self.page = 1
		await self.refresh(player)

	async def _first_page(self, player, *args, **kwargs):
		self.page = 1
		await self.refresh(player)

	async def _last_page(self, player, *args, **kwargs):
		self.page = self.num_pages
		await self.refresh(player)

	async def _next_page(self, player, *args, **kwargs):
		if self.page + 1 <= self.num_pages:
			self.page += 1
			await self.refresh(player)

	async def _next_10_pages(self, player, *args, **kwargs):
		if self.page + 10 <= self.num_pages:
			self.page += 10
		else:
			self.page = self.num_pages
		await self.refresh(player)

	async def _prev_page(self, player, *args, **kwargs):
		if self.page - 1 > 0:
			self.page -= 1
			await self.refresh(player)

	async def _prev_10_pages(self, player, *args, **kwargs):
		if self.page - 10 > 0:
			self.page -= 10
		else:
			self.page = 1
		await self.refresh(player)

[docs]class ManualListView(ListView):
	"""
	The ManualListView will act as a ListView, but not based on a model or query.
	"""

[docs]	def __init__(self, data=None, *args, **kwargs):
		super().__init__(*args, **kwargs)
		self.objects_raw = data

[docs]	async def get_data(self):
		"""
		Override this method, return a list with dictionaries inside.
		"""
		if not self.objects_raw:
			raise NotImplementedError
		return self.objects_raw

	async def get_object_data(self):
		frame = pd.DataFrame(await self.get_data())
		frame = await self.apply_filter(frame)
		frame = await self.apply_ordering(frame)
		self.count = len(frame)
		frame = await self.apply_pagination(frame)
		self.objects = frame.to_dict('records')
		return {
			'objects': self.objects,
			'search': self.search_text,
			'order': self.order,
			'count': self.count,
		}

	async def apply_filter(self, frame):
		if not self.search_text:
			return frame
		query = list()
		for field in await self.get_fields():
			if 'searching' in field and field['searching']:
				if 'search_strip_styles' in field and field['search_strip_styles']:
					query.append(
						frame[field['index']].apply(lambda x: self.search_text.lower() in style.style_strip(str(x).lower()) if x else False)
)
				else:
					query.append(
						frame[field['index']].apply(lambda x: self.search_text.lower() in str(x).lower() if x else False)
)
		if query:
			query = np.logical_or.reduce(query)
			return frame.loc[query]
		return frame

	async def apply_ordering(self, frame):
		if self.sort_field:
			return frame.sort_values(self.sort_field['index'], ascending=bool(self.sort_order))
		return frame

	async def apply_pagination(self, frame):
		return frame[(self.page - 1) * self.num_per_page:self.page * self.num_per_page]

 pyplanet.core.game

pyplanet.core.game

	
class pyplanet.core.game._Game[source]

	The game class holds information about the game itself and the server. The properties can be virtually overriden
to be able to proxy to new/old syntaxes. This way we can provide a read-only data structure and still
maintain the same structure if any of the third party API changes.

This class is available from the instance with instance.game.

Most variables seem to contain None, but they actually get propagated during the start and connection
with the dedicated server

	
dedicated_api_version = None

	

	
dedicated_build = None

	

	
dedicated_title = None

	

	
dedicated_version = None

	

	
game = None

	

	
game_from_environment(environment, game_name=None, title_id=None)[source]

	

	
property game_full

	

	
ladder_max = None

	

	
ladder_min = None

	

	
server_data_dir = None

	

	
server_download_rate = None

	

	
server_ip = None

	

	
server_is_dedicated = None

	

	
server_is_private = None

	

	
server_is_server = None

	

	
server_language = None

	

	
server_map_dir = None

	

	
server_max_players = None

	

	
server_max_specs = None

	

	
server_name = None

	

	
server_next_max_players = None

	

	
server_next_max_specs = None

	

	
server_p2p_port = None

	

	
server_password = None

	

	
server_path = None

	

	
server_player_id = None

	

	
server_player_login = None

	

	
server_port = None

	

	
server_skin_dir = None

	

	
server_spec_password = None

	

	
server_upload_rate = None

	

 Current CPs

Current CPs

Information

	Name:
	pyplanet.apps.contrib.currentcps

	Depends on:
	core.maniaplanet

	Game:
	Trackmania

Features

This app shows the progress of multiple players on the current track. The players are ordered by their current CP and their time at that CP.

Finished players

Players that already finished the track are shown first, but only the fastest 5 finished players are shown. However, each finished player can always see themselves.

Restart

When a player starts to drive and they haven’t reached any CP before, they are shown with CP 0 and a time of 0:00.000.
A player that has already reached a CP before and decides to restart is shown with the old CP and time until they pass a CP.
The same happens with players that have already finished.

Spectating

A player is automatically set to spectator mode when they click on a name in the widget. Of course, the player will be spectating the player they clicked on.
Also, players that enter spectator mode via this or any other method, will be removed from the current-CP-list. They will be re-added when they start to drive again.

Installation

Just add this line to your apps.py file:

APPS = {
 'default': [
 '...',
 'pyplanet.apps.contrib.currentcps', # Add this line.
 '...',
]
}

Commands

None

Signal handlers

Map End

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.map_start__end

	Functionality:
	Clear the current CPs when the map ends

Player waypoint

	Signal:
	pyplanet.apps.core.trackmania.callbacks.waypoint

	Functionality:
	Process and update widget.

Player start line

	Signal:
	pyplanet.apps.core.trackmania.callbacks.start_line

	Functionality:
	Process and update widget.

Player finish

	Signal:
	pyplanet.apps.core.trackmania.callbacks.finish

	Functionality:
	Process and update widget.

Player connect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

	Functionality:
	Display widget.

Player disconnect

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.player.player_disconnect

	Functionality:
	Remove the player from the widget.

Player enter spectator slot

	Signal:
	pyplanet.apps.core.maniaplanet.callbacks.map.player_enter_spectator_slot

	Functionality:
	Remove the player from the widget.

 Apps Architecture

Apps Architecture

More information about the apps itself, please go to Apps Dev Documentation

[image: ../_images/architecture.png]

 Core Architecture

Core Architecture

The architecture of the core and plugins is described in the sections bellow.

Inspiration.

While developing the Core we did look at how Django is managing their so called Apps. Because these apps are self contained
applications on it’s own, we also call it Apps.

[image: ../_images/architecture-overview.png]

Note

This image is only describing the most important core components, some components are not shown here.

 Installation by Binary (Not working atm)

Installation by Binary (Not working atm)

Error

EXPERIMENTAL: This method is new and can be unstable.

UNRELEASED: This method is hold back and is not yet released.

Contents

	Installation by Binary (Not working atm)

	1. Downloading binary

	2. Make binary excutable (Linux)

	5. Setup Project

1. Downloading binary

Download the binary from the last GitHub release page: https://github.com/PyPlanet/PyPlanet/releases

Make sure you download the pyplanet.exe or pyplanet (depending if you have Windows or Linux).

2. Make binary excutable (Linux)

This step is for Linux only!

You need to make sure you add the execution permission to the binary file.

chmod +x pyplanet

5. Setup Project

After installing PyPlanet on your system, you can’t yet start any instances because starting requires you to give up an
settings module. You could either provide this with the start command or create a project directory with skeleton files.

We recommend using the init_project command to create a local project installation where you can install apps, keep
PyPlanet and it’s apps up-to-date, provide settings through a useful settings module and provide manage.py as a wrapper
so you never have to manually provide your settings module.

In the example bellow we will setup a project with the name canyon_server. The folder canyon_server will be created
and skeleton files will be copied.

pyplanet init_project canyon_server

After setup your project, you have to install or update your dependencies from your local requirements.txt.

To upgrade your existing installation, see our Upgrading Guide.

Warning

If you use the virtual environment we installed in 3. Create environment for your installation, make sure you activate it before you install or update dependencies!

Head to the next step

Configure your PyPlanet installation now by going to the next chapter: Configuring PyPlanet.

_images/pyplanet-sm.png

_images/python-windows-1.png
S Python 361 (64-bit) Setup -

Install Python 3.6.1 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

® Install Now
CA\UsersUason\AppData\Local\Programs \Pythori Python3s
Includes IDLE, pip and documentation
Creates shortcuts and il ssociations

—> Customize installation

Choose location and features
puth
E Install launcher for all users (recommended)
Wlﬂd WS [Add Python 3.6 to PATH Cancel

_images/tm_1.jpg
£

Live Rankings

17 mi a neved zside
2 Smurf
3 #AdminseryChrissz
4 Genry Galante
5 S

Dedimania @

1 Ddari
2_0Fatkid

3 suiraM
TRE PR
5 S
25 [Cox).

26 |Genry_galante
27 | Jabedabedoe I

3 1ohyx2000
32 sameandequal
33| sneaky

mi a neved zsido 0:27.298
#Adminery Chris$2 - > +0:01.229

c 27 7 Q Checkpoint 5/8 fSmurt 002520
=7 Sl
Py R d: 00:32,193
o Tofe - R D ffoid onyx2000 2005052

o» wallace01700 ' A -00:01.449

Arend Ted Teddy.

26 |Genry_Galante
27 Jabedabedoe

S 28viok ou
29 blayer001

30 S
31.,0nyx2000,

1:98

Prev 1:12.712
Best 1:12.712

5119

_images/tm_2.jpg
& 18/128| @M 0/32 > LS L

& 0- 50k ¥

% PyPlanet 0.4.0
Live Rankings

T mianevedzside | 056412
2 angse 057.988
3 sadminservoviss2 | 102350
4 Genry Galante 108722
& | Toffe Py
Dedimania @
1 Ddorig®s | 052882
2 0Fatkia 053112
3 suraM 053538
4| PASA1E =i 0:54.285
5 Gaara o492
25 5 104,168
26 Genry_Galante ez
27 Jabedabedoe 108711
28 viok ou 100556
29 blayer01 110143
30 Toffe: Py
a1 onyx2000 16113
32 someandequal 131480

Sneaky. 1:38.694

Genry_Galante

Q Checkpoint 3/8 #AdminSery Chris92

e =2 o ;) Round:00:13.717 0"
»» ro 2 ound: HEN
» Toffe et dro . Ded ord: 2 0:14.17 Toffesurt Py

o o v ooo014s

mi a neved zsido

@ ‘Arena_Ted ' Tedd)

0:54.150°

2

Local Records @

83.3%| 10

i " Ddoriga | 052880
2 | Fotkid 153,112
3 SuiraM__ | 0553538,
4|F ™ 8 - |o54285

lonyx2000
[sameondeaual
Sneaky

3731485,

+0:01.145 0658

nav.xhtml

 Table of Contents

 		
 Welcome to PyPlanet’s documentation!

 		
 Getting Started (installation)

 		
 Requirements

 		
 Installation on Linux

 		
 1. Operating System needs

 		
 2. Install PyEnv and Python

 		
 3. Create environment for your installation

 		
 4. PyPlanet Installation

 		
 5. Setup Project

 		
 Installation on Windows

 		
 1. Installing Python

 		
 2. Creating Virtual Environment

 		
 3. PyPlanet Installation

 		
 4. Setup Project

 		
 Configuring PyPlanet

 		
 Debug Mode (base)

 		
 Pool defining (base)

 		
 Owners (base)

 		
 Database configuration (base.py)

 		
 Dedicated Server (base)

 		
 Server files settings (base)

 		
 Storage (base)

 		
 Cache (base)

 		
 Self Upgrade (base)

 		
 Songs (base)

 		
 Logging (base)

 		
 Enabling apps (apps)

 		
 Starting PyPlanet

 		
 Start and fork to PID file (Linux)

 		
 1. Starting detached

 		
 Start/stop with Screen (Linux)

 		
 1. Installation of screen

 		
 2. Start a new screen

 		
 3. Open a screen

 		
 4. Start PyPlanet

 		
 5. Leaving the screen

 		
 Install SystemD Service (Linux)

 		
 1. Installing the service

 		
 2. Determinate paths

 		
 3. Create the service definition file

 		
 4. Reload systemd

 		
 5. Starting/stopping PyPlanet

 		
 6. Starting at boot

 		
 Start standalone and in foreground (Linux and Windows)

 		
 1. Go to your project folder

 		
 2. Activate virtual environment

 		
 3. Start PyPlanet

 		
 Upgrading PyPlanet

 		
 In-game upgrade method

 		
 Manual PIP method

 		
 1. Check requirements.txt

 		
 2. Activate env

 		
 3. Upgrade PyPlanet core

 		
 4. Upgrade settings

 		
 5. Upgrade apps setting

 		
 6. Start PyPlanet

 		
 Migrating from old controller

 		
 Migrating from Xaseco2

 		
 Migrating from UAseco

 		
 Migrating from eXpansion

 		
 Migrating from ManiaControl

 		
 How To’s and troubleshooting

 		
 Correct Database Collation (MySQL)

 		
 MySQL Complaining about large indexes (1000 bytes)

 		
 Admin

 		
 Information

 		
 Features

 		
 Commands

 		
 PyPlanet

 		
 Maps

 		
 Players

 		
 Game Flow

 		
 Server

 		
 Signal handlers

 		
 Advertisements

 		
 Information

 		
 Features

 		
 Commands

 		
 Display Discord Server Info

 		
 Display PayPal Link

 		
 Signal handlers

 		
 Player connect

 		
 Best CPs

 		
 Information

 		
 Features

 		
 Installation

 		
 Commands

 		
 Signal handlers

 		
 Map begin

 		
 Player waypoint

 		
 Player connect

 		
 Map End

 		
 Clock

 		
 Information

 		
 Features

 		
 Signal handlers

 		
 Map begin

 		
 Player connect

 		
 Dedimania Records

 		
 Information

 		
 Features

 		
 Commands

 		
 Compare checkpoints

 		
 Signal handlers

 		
 Map begin

 		
 Map start

 		
 Map end

 		
 Player connect

 		
 Player disconnect

 		
 Player finish

 		
 Dynamic Points

 		
 Information

 		
 Features

 		
 Signal handlers

 		
 Map begin

 		
 Player connect

 		
 Player disconnect

 		
 Player info change

 		
 Dynatime

 		
 Information

 		
 Features

 		
 Commands

 		
 Signal handlers

 		
 Map begin

 		
 Jukebox

 		
 Information

 		
 Features

 		
 Commands

 		
 Display maplist

 		
 Display jukebox list

 		
 Drop jukeboxed map

 		
 Clear jukebox

 		
 Signal handlers

 		
 Podium start

 		
 Karma

 		
 Information

 		
 Features

 		
 Commands

 		
 Display votes

 		
 Signal handlers

 		
 Map begin

 		
 Player chat

 		
 Player connect

 		
 Live Rankings

 		
 Information

 		
 Features

 		
 Installation

 		
 Commands

 		
 Signal handlers

 		
 Map begin

 		
 Player finish

 		
 Player waypoint

 		
 Player give up

 		
 Player connect

 		
 Scores

 		
 Local Records

 		
 Information

 		
 Features

 		
 Commands

 		
 Display local records

 		
 Compare checkpoints

 		
 Signal handlers

 		
 Map begin

 		
 Player connect

 		
 Player finish

 		
 Map Info

 		
 Information

 		
 Features

 		
 Commands

 		
 Signal handlers

 		
 Map begin

 		
 Player connect

 		
 Music Server

 		
 Information

 		
 Features

 		
 Commands

 		
 Display music list

 		
 Display Playlist

 		
 Current Song

 		
 Play Song

 		
 Signal handlers

 		
 Map End

 		
 ManiaExchange / TrackmaniaExchange

 		
 Information

 		
 Features

 		
 Commands

 		
 Add map(s) from MX/TMX

 		
 Search maps on MX/TMX

 		
 Add mappack from MX/TMX

 		
 Search mappacks on MX/TMX

 		
 Check maplist for updates

 		
 Get current map info

 		
 Players

 		
 Information

 		
 Features

 		
 Commands

 		
 Display playerlist

 		
 Show last online date of player

 		
 Signal handlers

 		
 Waiting Queue

 		
 Information

 		
 Features

 		
 Commands

 		
 Show queue list

 		
 Clear queue

 		
 Shuffle queue

 		
 Signal handlers

 		
 Player Info Change

 		
 Player enters player slot

 		
 Player enters spectator slot

 		
 Player connect

 		
 Player disconnect

 		
 Sector Times

 		
 Information

 		
 Features

 		
 Signal handlers

 		
 Map begin

 		
 Player connect

 		
 Transactions

 		
 Information

 		
 Features

 		
 Commands

 		
 Donate

 		
 Get amount of planets on server

 		
 Pay planets to player

 		
 Signal handlers

 		
 Map begin

 		
 Voting

 		
 Information

 		
 Features

 		
 Commands

 		
 Replay Vote

 		
 Skip Vote

 		
 Restart Vote

 		
 Extend TimeAttack Time

 		
 Vote Yes

 		
 Vote No

 		
 Cancel Vote

 		
 Signal handlers

 		
 Fun Commands

 		
 Information

 		
 Features

 		
 Commands

 		
 Boot Me

 		
 Rage Quit

 		
 AFK

 		
 Good Game

 		
 Nice One

 		
 Nice Try/Nice Time

 		
 Nice Shot

 		
 Statistics

 		
 Information

 		
 Features

 		
 Commands

 		
 Display Ideal Checkpoints

 		
 Display Top Donators

 		
 Display Top Active

 		
 Display Top Players (based on records) (TM only)

 		
 Display personal score progression on map (TM only)

 		
 PyPlanet Core/Toolbox

 		
 Information

 		
 Features

 		
 Architecture & Design

 		
 Core Architecture

 		
 Apps Architecture

 		
 App Development

 		
 Apps Architecture

 		
 Life Cycle

 		
 on_init

 		
 on_start

 		
 on_stop

 		
 on_destroy

 		
 Create app

 		
 1. Create Config

 		
 2. Create models

 		
 3. Add to configuration

 		
 4. Enable debug

 		
 5. Start PyPlanet

 		
 Context (UI + Settings)

 		
 Contrib + Core access

 		
 Models

 		
 Define models

 		
 Operations on models

 		
 Migrations

 		
 Create migrations

 		
 Chat Messages

 		
 Dedicated/Script methods

 		
 User Interface

 		
 Using templates

 		
 ManiaScript

 		
 ManiaLink

 		
 Useful references

 		
 Signals (callbacks)

 		
 Maniaplanet

 		
 Flow

 		
 Map

 		
 Player

 		
 User Interface

 		
 Other

 		
 Shootmania

 		
 Base

 		
 Elite

 		
 Joust

 		
 Royal

 		
 Trackmania

 		
 API Documentation

 		
 pyplanet.apps

 		
 pyplanet.views

 		
 pyplanet.views

 		
 pyplanet.views.generics

 		
 pyplanet.core.exceptions

 		
 pyplanet.core.instance

 		
 pyplanet.core.ui

 		
 pyplanet.core.storage

 		
 pyplanet.core.storage.drivers

 		
 pyplanet.core.events

 		
 pyplanet.core.events.callback

 		
 pyplanet.core.events.dispatcher

 		
 pyplanet.god

 		
 pyplanet.contrib.map

 		
 pyplanet.contrib.player

 		
 pyplanet.contrib.command

 		
 pyplanet.contrib.permission

 		
 pyplanet.contrib.setting

 		
 pyplanet.contrib.mode

 		
 Signals

 		
 pyplanet.contrib.converter

 		
 pyplanet.contrib.chat

 		
 Sending chat messages

 		
 API Documentation

 		
 pyplanet.utils

 		
 pyplanet.utils.gbxparser

 		
 pyplanet.utils.style

 		
 pyplanet.utils.times

 		
 Support & Contact

 		
 Demo Servers

 		
 Who is behind PyPlanet

 		
 Donate

 		
 Privacy

 		
 Error reports

 		
 Analytics & Telemetry

 		
 Changelog

 		
 0.9.6 + 0.9.7 + 0.9.8 + 0.9.9 (21 February 2021)

 		
 Core

 		
 Apps

 		
 0.9.5 (28 October 2020)

 		
 Core

 		
 Apps

 		
 0.9.4 (16 October 2020)

 		
 Core

 		
 Apps

 		
 0.9.3 (10 September 2020)

 		
 Core

 		
 Apps

 		
 0.9.2 (8 July 2020)

 		
 Apps

 		
 0.9.1 (6 July 2020)

 		
 Apps

 		
 0.9.0 (1 July 2020)

 		
 Core

 		
 Apps

 		
 0.8.2 (23 May 2020)

 		
 Core

 		
 0.8.1 (18 May 2020)

 		
 Apps

 		
 0.8.0 (13 May 2020)

 		
 Core

 		
 Apps

 		
 0.7.4 (04 March 2020)

 		
 Apps

 		
 0.7.3 (02 March 2020)

 		
 Core

 		
 0.7.2 (02 March 2020)

 		
 Core

 		
 Apps

 		
 0.7.1 (23 October 2019)

 		
 Core

 		
 0.7.0 (05 October 2019)

 		
 Core

 		
 Apps

 		
 0.6.4 (17 February 2019)

 		
 Core

 		
 Apps

 		
 0.6.3 (17 November 2018)

 		
 Core

 		
 0.6.2 (17 November 2018)

 		
 Core

 		
 Apps

 		
 0.6.1 (7 October 2018)

 		
 Core

 		
 Apps

 		
 0.6.0 (5 May 2018)

 		
 Core

 		
 Apps

 		
 0.5.4

 		
 Core

 		
 Apps

 		
 0.5.3

 		
 Apps

 		
 0.5.2

 		
 Core

 		
 Apps

 		
 0.5.1

 		
 Core

 		
 0.5.0

 		
 Core

 		
 Apps

 		
 0.4.5

 		
 Core

 		
 Apps

 		
 0.4.4

 		
 0.4.3

 		
 Apps

 		
 0.4.2

 		
 Core

 		
 Apps

 		
 0.4.1

 		
 Core

 		
 Apps

 		
 0.4.0

 		
 Core

 		
 Apps

 		
 0.3.3

 		
 Core

 		
 Apps

 		
 0.3.2

 		
 Core

 		
 Apps

 		
 0.3.1

 		
 Core

 		
 Apps

 		
 0.3.0

 		
 Core

 		
 Apps

 		
 0.2.0

 		
 Core

 		
 Apps

 		
 0.1.5

 		
 Core

 		
 Apps

 		
 0.1.4

 		
 Core

 		
 0.1.3

 		
 Apps

 		
 0.1.2

 		
 Core

 		
 Apps

 		
 0.1.1

 		
 Core

 		
 0.1.0

 		
 Core

 		
 Contrib Apps

 		
 0.0.3

 		
 Contrib Apps

 		
 0.0.2

 		
 Contrib Apps

 		
 0.0.1

 		
 Core

 		
 Contrib Apps

 		
 Todo (docs)

_images/architecture-overview.png
Global Overview

Dedicated Server (ManiaPlanetServe) Dedicated File Access
Dedicated Endpoint Dedicated Files
(XMLRPC) (Maps, Replays, Etc)

\
ovhon Convter-coe V 7
Goxomer
StrageOnver
(ages St
ﬁ e ana. | | o Renoe)
Pa—
Gy 005,
vent Nanager iaions. £

=

[

Contrib Core:
App Manager Components
L)
Python Controler - App|
v
App Context App Context App Context
App. App. App.

_images/architecture.png
App Perspective

‘App Module

App
(Extending base plugin,

Core Base Classes

Base App Config
5| Contans mefadata.

contains only metadata.
and requirements)

Python Packages/Files

models callbacks views templates

about the app,
registering app.

Base Model
Base model(s) implement the.
P Getaut modelclass, abstracting
any backend related fields or logic

Record

View I TemplateView
Base view handles the view

RecordView

record_template.xmi

% handing and contex. There can
be a few default views. Like
LitView,

Callback
Callback objects contains the
defaultlogic for abstracting the

Callbacks are for adding more ‘Maniaplanet APL
callbackimethod abstractions
to the core. Used for custom
scipts, Command
Command objects contains.
information about adin or not,
about command name and help
text,
sample_app

@, app.py - contans the App Contg class

. models.py - cortain the models. Can afso be module with _ni_py tht oads all models

@ views py - ortai view ogic
@ commands py cortains commands objects.

@ calbacks py - ontais custom calbacks

[templates
N

=] sample_windowxmi - Jia2 template, used in one of the views py classes

_images/lifecycle.png
PyPlanet
Discover apps,
models and signals.

vy

PyPlanet
Create model tables.

Run migrations

vy

PyPlanet
Investigate order or
Startup.

I 2—

PyPlanet
Trigger received to stop)
‘app (gameimode)

L

App
on_init)

v

App
on_start()

wi

il be called

when app needs to restart

App
on_stop()

R

App
on_destroy()

el

PyPlanet
Destroying elements
(Ul et)

_static/architecture-overview.png
Global Overview

Dedicated Server (ManiaPlanetServe) Dedicated File Access
Dedicated Endpoint Dedicated Files
(XMLRPC) (Maps, Replays, Etc)

\
ovhon Convter-coe V 7
Goxomer
StrageOnver
(ages St
ﬁ e ana. | | o Renoe)
Pa—
Gy 005,
vent Nanager iaions. £

=

[

Contrib Core:
App Manager Components
L)
Python Controler - App|
v
App Context App Context App Context
App. App. App.

_static/plus.png

_static/file.png

_static/minus.png

_static/apps/architecture.png
App Perspective

‘App Module

App
(Extending base plugin,

Core Base Classes

Base App Config
5| Contans mefadata.

contains only metadata.
and requirements)

Python Packages/Files

models callbacks views templates

about the app,
registering app.

Base Model
Base model(s) implement the.
P Getaut modelclass, abstracting
any backend related fields or logic

Record

View I TemplateView
Base view handles the view

RecordView

record_template.xmi

% handing and contex. There can
be a few default views. Like
LitView,

Callback
Callback objects contains the
defaultlogic for abstracting the

Callbacks are for adding more ‘Maniaplanet APL
callbackimethod abstractions
to the core. Used for custom
scipts, Command
Command objects contains.
information about adin or not,
about command name and help
text,
sample_app

@, app.py - contans the App Contg class

. models.py - cortain the models. Can afso be module with _ni_py tht oads all models

@ views py - ortai view ogic
@ commands py cortains commands obje