
PyPlanet Documentation
Release 0.7.0

PyPlanet (Tom Valk)

Oct 05, 2019

USER DOCUMENTATION

1 Getting Started (installation) 3
1.1 Requirements . 3
1.2 Installation by Binary (Experimental) . 3
1.3 Installation on Linux . 4
1.4 Installation on Windows . 7

2 Configuring PyPlanet 11
2.1 Debug Mode (base) . 12
2.2 Pool defining (base) . 12
2.3 Owners (base) . 12
2.4 Database configuration (base.py) . 13
2.5 Dedicated Server (base) . 15
2.6 Server files settings (base) . 16
2.7 Storage (base) . 16
2.8 Cache (base) . 18
2.9 Self Upgrade (base) . 18
2.10 Songs (base) . 18
2.11 Logging (base) . 19
2.12 Enabling apps (apps) . 20

3 Starting PyPlanet 23
3.1 Start and fork to PID file (Linux) . 23
3.2 Start/stop with Screen (Linux) . 24
3.3 Install SystemD Service (Linux) . 25
3.4 Start standalone and in foreground (Linux and Windows) . 27

4 Upgrading PyPlanet 29
4.1 In-game upgrade method . 29
4.2 Manual PIP method . 30

5 Migrating from old controller 33
5.1 Migrating from Xaseco2 . 33
5.2 Migrating from UAseco . 33
5.3 Migrating from eXpansion . 34
5.4 Migrating from ManiaControl . 34

6 How To’s and troubleshooting 37
6.1 Correct Database Collation (MySQL) . 37
6.2 MySQL Complaining about large indexes (1000 bytes) . 37

7 Admin 39

i

7.1 Information . 39
7.2 Features . 39
7.3 Commands . 39
7.4 Signal handlers . 46

8 Advertisements 47
8.1 Information . 47
8.2 Features . 47
8.3 Commands . 47
8.4 Signal handlers . 48

9 Best CPs 49
9.1 Information . 49
9.2 Features . 49
9.3 Installation . 49
9.4 Commands . 49
9.5 Signal handlers . 50

10 Clock 51
10.1 Information . 51
10.2 Features . 51
10.3 Signal handlers . 51

11 Dedimania Records 53
11.1 Information . 53
11.2 Features . 53
11.3 Commands . 53
11.4 Signal handlers . 54

12 Dynamic Points 55
12.1 Information . 55
12.2 Features . 55
12.3 Signal handlers . 55

13 Jukebox 57
13.1 Information . 57
13.2 Features . 57
13.3 Commands . 57
13.4 Signal handlers . 58

14 Karma 59
14.1 Information . 59
14.2 Features . 59
14.3 Commands . 59
14.4 Signal handlers . 59

15 Live Rankings 61
15.1 Information . 61
15.2 Features . 61
15.3 Installation . 61
15.4 Commands . 61
15.5 Signal handlers . 62

16 Local Records 63
16.1 Information . 63

ii

16.2 Features . 63
16.3 Commands . 63
16.4 Signal handlers . 64

17 Map Info 65
17.1 Information . 65
17.2 Features . 65
17.3 Commands . 65
17.4 Signal handlers . 65

18 Music Server 67
18.1 Information . 67
18.2 Features . 67
18.3 Commands . 67
18.4 Signal handlers . 68

19 ManiaExchange 69
19.1 Information . 69
19.2 Features . 69
19.3 Commands . 69

20 Players 71
20.1 Information . 71
20.2 Features . 71
20.3 Commands . 71
20.4 Signal handlers . 71

21 Waiting Queue 73
21.1 Information . 73
21.2 Features . 73
21.3 Commands . 73
21.4 Signal handlers . 74

22 Sector Times 75
22.1 Information . 75
22.2 Features . 75
22.3 Signal handlers . 75

23 Transactions 77
23.1 Information . 77
23.2 Features . 77
23.3 Commands . 77
23.4 Signal handlers . 78

24 Voting 79
24.1 Information . 79
24.2 Features . 79
24.3 Commands . 79
24.4 Signal handlers . 80

25 Statistics 81
25.1 Information . 81
25.2 Features . 81
25.3 Commands . 81

iii

26 Architecture & Design 83
26.1 Core Architecture . 83
26.2 Apps Architecture . 85

27 App Development 87
27.1 Apps Architecture . 88
27.2 Life Cycle . 90
27.3 Create app . 91
27.4 Context (UI + Settings) . 93
27.5 Contrib + Core access . 93
27.6 Models . 93
27.7 Migrations . 95
27.8 Chat Messages . 96
27.9 Dedicated/Script methods . 96
27.10 User Interface . 97
27.11 Useful references . 98

28 Signals (callbacks) 99
28.1 Maniaplanet . 99
28.2 Shootmania . 109
28.3 Trackmania . 117

29 API Documentation 123
29.1 pyplanet.apps . 123
29.2 pyplanet.views . 125
29.3 pyplanet.core.exceptions . 132
29.4 pyplanet.core.instance . 133
29.5 pyplanet.core.ui . 134
29.6 pyplanet.core.storage . 138
29.7 pyplanet.core.events . 139
29.8 pyplanet.god . 142
29.9 pyplanet.contrib.map . 143
29.10 pyplanet.contrib.player . 146
29.11 pyplanet.contrib.command . 148
29.12 pyplanet.contrib.permission . 151
29.13 pyplanet.contrib.setting . 152
29.14 pyplanet.contrib.mode . 157
29.15 pyplanet.contrib.converter . 158
29.16 pyplanet.contrib.chat . 158
29.17 pyplanet.utils . 160

30 Support & Contact 163
30.1 Demo Servers . 163
30.2 Who is behind PyPlanet . 163

31 Donate 165

32 Privacy 167
32.1 Error reports . 167
32.2 Analytics & Telemetry . 168

33 Changelog 169
33.1 0.7.0 (05 October 2019) . 169
33.2 0.6.4 (17 February 2019) . 170
33.3 0.6.3 (17 November 2018) . 170

iv

33.4 0.6.2 (17 November 2018) . 170
33.5 0.6.1 (7 October 2018) . 171
33.6 0.6.0 (5 May 2018) . 171
33.7 0.5.4 . 172
33.8 0.5.3 . 173
33.9 0.5.2 . 173
33.10 0.5.1 . 174
33.11 0.5.0 . 174
33.12 0.4.5 . 176
33.13 0.4.4 . 176
33.14 0.4.3 . 176
33.15 0.4.2 . 176
33.16 0.4.1 . 177
33.17 0.4.0 . 178
33.18 0.3.3 . 179
33.19 0.3.2 . 179
33.20 0.3.1 . 179
33.21 0.3.0 . 180
33.22 0.2.0 . 181
33.23 0.1.5 . 181
33.24 0.1.4 . 182
33.25 0.1.3 . 182
33.26 0.1.2 . 182
33.27 0.1.1 . 183
33.28 0.1.0 . 183
33.29 0.0.3 . 183
33.30 0.0.2 . 183
33.31 0.0.1 . 183

34 Todo (docs) 185

35 Some thoughts from experts 187

36 Screenshots 189

37 Indices and tables 191

38 Links 193

Python Module Index 195

Index 197

v

vi

PyPlanet Documentation, Release 0.7.0

PyPlanet is a Maniaplanet Dedicated Server Controller that works on Python 3.5 and later. Because Maniaplanet is
using a system that can be event based we use AsyncIO to provide an event loop and have simultaneously processing
of received events from the dedicated server.

Features:

• Core: Super fast and ‘event’ driven based on Python 3.5 asyncio eventloop.

• Core: Stable and well designed core and apps system. (Inspired by Django).

• Core: All apps will handle the game experience.

• Core: Adjustable settings for all your apps.

• Core: Supports Trackmania and Shootmania, Scripted only!

• App: Local Records, including widget + list.

• App: Dedimania Records, including widget + list.

• App: Admin Commands, Providing with basic commands and control for maintaining your server.

• App: Admin Toolbar, Providing mostly used admin functions within a few clicks.

• App: Karma, Let your players vote on your maps! Includes MX Karma integration.

• App: Jukebox, Let your players ‘juke’ the next map.

• App: ManiaExchange, Simply add your maps directly from Mania-Exchange.

• App: Players, This app shows messages when players join and leave.

• App: Transactions, Donate planets to the server, show number of planets on server and pay out players.

• App: Live Rankings, Show the live rankings of the game mode. (Trackmania).

• App: Sector Times, Compare your checkpoint time against your local or dedimania record. (Trackmania).

• App: Dynamic Pointlimit, Royal point limit adjustment based on the number of players. (Shootmania Royal).

• App: CP Times, Show the best checkpoint times on top of your screen.

• App: Chat based voting, No more uncontrollable and unfair Call Votes. Use chat based voting.

• App: Vote to extend the TimeAttack limit instead of restarting the map! Extend-TA© command and voting is
awesome!

• App: Waiting Queue, no more unfair and spamming of the join button, fairly queue spectators to join your full
server.

• App: Add links to your PayPal donate page or Discord server.

Do you want to install PyPlanet, head towards our Getting Started Manual. Want to see PyPlanet in action, head to
Screenshots.

USER DOCUMENTATION 1

PyPlanet Documentation, Release 0.7.0

The code is open source, and available on GitHub.

The main documentation for the site is organized into a couple sections:

• User Documentation

• Apps Documentation

• About PyPlanet

Information about development of apps and the core is also available under:

• Developer Documentation

2 USER DOCUMENTATION

https://github.com/PyPlanet

CHAPTER

ONE

GETTING STARTED (INSTALLATION)

1.1 Requirements

PyPlanet runs on Python 3.5 and later. Most linux distributions contain default packages or will come with Python pre-
installed. If you don’t have Python 3.5 you can still continue the installation, we will help you through the installation
of Python 3.5 in our installation guides!

Summary of requirements:

• Python 3.5+ and pip 9.

• MySQL Server or PostgreSQL Server.

• Maniaplanet Dedicated (Maniaplanet 4 is minimum)

Installation manuals:

Please head to one of our installation manuals to continue:

Linux Guide or Windows Guide

1.2 Installation by Binary (Experimental)

Error: EXPERIMENTAL: This method is new and can be unstable.

UNRELEASED: This method is hold back and is not yet released.

Contents

• Installation by Binary (Experimental)

– 1. Downloading binary

– 2. Make binary excutable (Linux)

– 5. Setup Project

1.2.1 1. Downloading binary

Download the binary from the last GitHub release page: https://github.com/PyPlanet/PyPlanet/releases

3

https://github.com/PyPlanet/PyPlanet/releases

PyPlanet Documentation, Release 0.7.0

Make sure you download the pyplanet.exe or pyplanet (depending if you have Windows or Linux).

1.2.2 2. Make binary excutable (Linux)

This step is for Linux only!

You need to make sure you add the execution permission to the binary file.

chmod +x pyplanet

1.2.3 5. Setup Project

After installing PyPlanet on your system, you can’t yet start any instances because starting requires you to give up an
settings module. You could either provide this with the start command or create a project directory with skeleton files.

We recommend using the init_project command to create a local project installation where you can install apps,
keep PyPlanet and it’s apps up-to-date, provide settings through a useful settings module and provide manage.py as
a wrapper so you never have to manually provide your settings module.

In the example bellow we will setup a project with the name canyon_server. The folder canyon_server will be created
and skeleton files will be copied.

pyplanet init_project canyon_server

After setup your project, you have to install or update your dependencies from your local requirements.txt.

To upgrade your existing installation, see our Upgrading Guide.

Warning: If you use the virtual environment we installed in 3. Create environment for your installation, make
sure you activate it before you install or update dependencies!

Head to the next step

Configure your PyPlanet installation now by going to the next chapter: Configuring PyPlanet.

1.3 Installation on Linux

Contents

• Installation on Linux

– 1. Operating System needs

* Debian / Ubuntu

* Fedora / RHEL based

– 2. Install PyEnv and Python

– 3. Create environment for your installation

– 4. PyPlanet Installation

– 5. Setup Project

4 Chapter 1. Getting Started (installation)

PyPlanet Documentation, Release 0.7.0

1.3.1 1. Operating System needs

PyPlanet requires Python 3.5 and later. We also require to have some operating system libraries and build tools
installed. We will guide you through the steps that are required to install those requirements in this subtopic.

Debian / Ubuntu

Install the operating system requirements by executing the following commands:

sudo apt-get update && sudo apt-get install build-essential libssl-dev
libffi-dev python3-dev zlib1g-dev

Fedora / RHEL based

Install the operating system requirements by executing the following commands:

sudo yum install gcc libffi-devel python3-devel openssl-devel zlib.

1.3.2 2. Install PyEnv and Python

To make things as easy as possible we are going to use PyEnv. It’s a tool that will install Python for you with all the
requirements and also manage to adjust the environment we are running in.

The following steps are the same for all distributions.

Note: Make sure you are logged in as the user that is going to run PyPlanet. (Mostly not root!).

Install PyEnv

curl -L https://raw.githubusercontent.com/pyenv/pyenv-installer/master/bin/pyenv-
→˓installer | bash
printf '\nexport PATH="$HOME/.pyenv/bin:$PATH"\neval "$(pyenv init -)"\neval "$(pyenv
→˓virtualenv-init -)"\n' >> ~/.bashrc
source ~/.bashrc

Install Python

pyenv install 3.7.0
pyenv global 3.7.0

Attention: The first set of commands makes adjustments to the ~/.bashrc file. It can be that you don’t have
this file installed.

If that is the case, you can add those lines manually to any other script that is executed when you open your shell
(.profile) or execute these commands manually at every start of a SSH session. Your SSH session might have
to be restarted after this change!

export PATH="~/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

1.3. Installation on Linux 5

PyPlanet Documentation, Release 0.7.0

1.3.3 3. Create environment for your installation

We recommend to separate multiple installations by creating a so called virtual environment. This will make sure you
can run several PyPlanet and dependency versions on the same Python installation. You can skip this step if you don’t
want to use virtual environments, but we recommend to use it.

Create virtualenv:

pyenv virtualenv 3.7.0 my-env
Where 'my-env' is your environment name, you need adjust this if you have multiple
→˓installations.

Activate virtualenv:

Note: You have to activate your virtual environment every time you want to execute PyPlanet commands! That
means that you have to activate before you update, start, develop and do anything with PyPlanet!

pyenv activate my-env
Where 'my-env' is your environment name, you need adjust this if you have multiple
→˓installations.

1.3.4 4. PyPlanet Installation

PyPlanet is published through the Python Package Index (PyPi) and is easy to install with pip.

pip install pyplanet --upgrade

After installing it on your system you can use the pyplanet cli commands. To get help about commands, use
pyplanet help.

1.3.5 5. Setup Project

After installing PyPlanet on your system, you can’t yet start any instances because starting requires you to give up an
settings module. You could either provide this with the start command or create a project directory with skeleton files.

We recommend using the init_project command to create a local project installation where you can install apps,
keep PyPlanet and it’s apps up-to-date, provide settings through a useful settings module and provide manage.py as
a wrapper so you never have to manually provide your settings module.

In the example bellow we will setup a project with the name canyon_server. The folder canyon_server will be created
and skeleton files will be copied.

pyplanet init_project canyon_server

After setup your project, you have to install or update your dependencies from your local requirements.txt.

To upgrade your existing installation, see our Upgrading Guide.

Warning: If you use the virtual environment we installed in 3. Create environment for your installation, make
sure you activate it before you install or update dependencies!

Head to the next step

6 Chapter 1. Getting Started (installation)

PyPlanet Documentation, Release 0.7.0

Configure your PyPlanet installation now by going to the next chapter: Configuring PyPlanet.

1.4 Installation on Windows

Contents

• Installation on Windows

– 1. Installing Python

– 2. Creating Virtual Environment

– 3. PyPlanet Installation

– 4. Setup Project

1.4.1 1. Installing Python

If you have not yet installed Python 3.5 or later on your Windows machine, do it now by going to the following link:

https://www.python.org/downloads/release/python-370/

Head towards the end of the page and click on the Windows x86-64 executable installer link. After starting the
executable you will get an wizard.

Make sure it looks like this and click on the red area to continue.

Fig. 1: Setup wizard with the checkboxes enabled.

1.4. Installation on Windows 7

https://www.python.org/downloads/release/python-370/

PyPlanet Documentation, Release 0.7.0

Note: Make sure you checked the two checkboxes: Install launcher for all users and Add Python to PATH.

1.4.2 2. Creating Virtual Environment

To prevent the usage of the administration leverage and to benefit from multiple PyPlanet installations and a clean
environment we recommend to setup a Virtual Environment.

First of all we need to install the virtualenv package. To do so, open a terminal screen by hitting start and write
cmd. Open the command prompt.

pip install virtualenv

After this we will initiate the environment, you can do this by going to your directory where you want to setup the
PyPlanet installation. Create a folder somewhere that is empty and ready for the PyPlanet settings and other files.

Open a terminal in this folder by holding SHIFT and Right click on an empty space in the folder. Then click
Open terminal here.

In the terminal, type the following command to create the environment:

virtualenv env

From now you have to activate the virtualenv, every time you want to execute operations with PyPlanet (such as
starting, installing, updating, etc). To activate, use the following commands:

Windows, in your command prompt
env\Scripts\activate.bat

1.4.3 3. PyPlanet Installation

PyPlanet is published through the Python Package Index (PyPi) and is easy to install with the pip commands.

pip install pyplanet --upgrade

After installing it on your system you can use the pyplanet cli commands. To get help about commands, use
pyplanet help.

1.4.4 4. Setup Project

After installing PyPlanet on your system, you can’t yet start any instances because starting requires you to give up an
settings module. You could either provide this with the start command or create a project directory with skeleton files.

We recommend using the init_project command to create a local project installation where you can install apps,
keep PyPlanet and it’s apps up-to-date, provide settings through a useful settings module and provide manage.py as
a wrapper so you never have to manually provide your settings module.

Because you have created an Virtual Environment earlier you want to store your ‘project’ in the same folder. You can
do this with the following command:

pyplanet init_project .

8 Chapter 1. Getting Started (installation)

PyPlanet Documentation, Release 0.7.0

After setup your project, you have to install or update your dependencies from your local requirements.txt.

To upgrade your existing installation, see our Upgrading Guide.

Warning: If you use the virtual environment we installed in 3. Create environment for your installation, make
sure you activate it before you install or update dependencies!

Head to the next step

Configure your PyPlanet installation now by going to the next chapter: Configuring PyPlanet.

1.4. Installation on Windows 9

PyPlanet Documentation, Release 0.7.0

10 Chapter 1. Getting Started (installation)

CHAPTER

TWO

CONFIGURING PYPLANET

Settings method is the method to read out settings. This can be one of the following methods/backends:

• python: Default, the python loader uses the files base.py and apps.py in the
PYPLANET_SETTINGS_MODULE provided.

• json: Read json files base.json and apps.json in the provided PYPLANET_SETTINGS_DIRECTORY
directory.

• yaml: Read yaml files base.yaml and apps.yaml in the provided PYPLANET_SETTINGS_DIRECTORY
directory.

Settings module (python only) is where the PyPlanet settings are stored for python backend. You provide the settings
module by providing the environment variable PYPLANET_SETTINGS_MODULE. Most of the times this is set in the
manage.py.

In most cases this settings module is settings and is located at the project root subfolder settings.

Settings directory (json and yaml only) is where the two configuration files are located for the file based backends
such as JSON or YAML.

Split files is the default, based on the CLI project generation. This will create two files inside of the settings module,
the one is for apps (apps.py) and the other for all base configuration (base.py). For both other backends its quite
the same.

Pools are the different instances that will be running from PyPlanet. PyPlanet supports multiple controllers from a
single setup and project, and even a start command. We are just spawning subprocesses when you start PyPlanet.
More information about this setup and architecture on the Architecture overview.

Case sensitive: Only the keys are not case insensitive (with exception of the Python backend). The value and the
subkeys are all case sensitive!

Warning: In the examples in this document you often find an dictionary with the key being default. This is a
Pool aware setting and is different for every pool.

If you are going to add another pool, you should add the pool name to the keys of the dictionary, and fill the value
like it is in the examples given here.

Also, the JSON examples always contain the opening and closing brackets in the examples. In a real file you
would have these only once around the whole file.

11

PyPlanet Documentation, Release 0.7.0

2.1 Debug Mode (base)

In most cases you don’t have to use this setting. This setting is only here for developers. While you are in debug mode,
there will be More verbose output, no reporting of exceptions, and debugging of SQL queries.

When generating a project with the CLI, you will find this setting to be looking at your environment variable
PYPLANET_DEBUG. Therefor, enable debug by starting PyPlanet with PYPLANET_DEBUG=1. Or changing the
setting to DEBUG = True. This only works for the python config backend

Listing 1: base.yaml

DEBUG: false

Listing 2: base.json

{
"DEBUG": false

}

Note: Please enable DEBUG when developing, as it won’t send reports to the PyPlanet developers, which needs time
to investigate and cleanup.

2.2 Pool defining (base)

You need to define the pools you want to start and have activated with the POOLS list.

Listing 3: base.py

Add more identifiers to start more controller instances.
POOLS = [

'default'
]

Listing 4: base.yaml

POOLS:
- default

Listing 5: base.json

{
"POOLS": [
"default"

]
}

2.3 Owners (base)

Because you want to have admin access at the first boot, you have to define a few master admin logins here. This is
optional but will help you to get started directly after starting. This setting is pool aware.

12 Chapter 2. Configuring PyPlanet

PyPlanet Documentation, Release 0.7.0

Listing 6: base.py

OWNERS = {
'default': ['your-maniaplanet-login', 'second-login']

}

Listing 7: base.yaml

OWNERS:
default:
- your-maniaplanet-login
- second-login

Listing 8: base.json

{
"OWNERS": {
"default": [

"your-maniaplanet-login",
"second-login"

]
}

}

2.4 Database configuration (base.py)

The database configuration is mostly the first setting you will adjust to your needs. Currently PyPlanet has support for
these database drivers:

• peewee_async.MySQLDatabase: Using PyMySQL, a full Python based driver. (Supports MariaDB and
PerconaDB).

• peewee_async.PostgresqlDatabase: Using a full native Python driver.

Creating database:

You will have to create the database scheme yourself. Make sure you create it with a database collate that is based
on UTF-8. We require for MySQL: utf8mb4_unicode_ci to work with the new symbols in Maniaplanet. Also,
please make sure your MySQL installation uses InnoDB by default, more information can be found here: MySQL
Index Error

Create MySQL Database by running this command:

CREATE DATABASE pyplanet
CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;

Configuration

Configuration can follow the following examples:

Listing 9: base.py

DATABASES = { # Using PostgreSQL.
'default': {

(continues on next page)

2.4. Database configuration (base.py) 13

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

'ENGINE': 'peewee_async.PostgresqlDatabase',
'NAME': 'pyplanet',
'OPTIONS': {

'host': 'localhost',
'user': 'pyplanet',
'password': 'pyplanet',
'autocommit': True,

}
}

}

DATABASES = { # Using MySQL (or MariaDB, PerconaDB, etc).
'default': {
'ENGINE': 'peewee_async.MySQLDatabase',
'NAME': 'pyplanet',
'OPTIONS': {

'host': 'localhost',
'user': 'pyplanet',
'password': 'pyplanet',
'charset': 'utf8mb4',

}
}

}

Listing 10: base.yaml

DATABASES:
default:
ENGINE: 'peewee_async.MySQLDatabase'
NAME: 'pyplanet'
OPTIONS:
host: 'localhost'
user: 'pyplanet'
password: 'pyplanet'
charset: 'utf8mb4'

14 Chapter 2. Configuring PyPlanet

PyPlanet Documentation, Release 0.7.0

Listing 11: base.json

{
"DATABASES": {
"default": {

"ENGINE": "peewee_async.MySQLDatabase",
"NAME": "pyplanet",
"OPTIONS": {

"host": "localhost",
"user": "pyplanet",
"password": "pyplanet",
"charset": "utf8mb4"

}
}

}
}

2.5 Dedicated Server (base)

This one is pretty important, and pretty simple too. Look at the examples bellow, and you know how to set this up!

Listing 12: base.py

DEDICATED = {
'default': {
'HOST': '127.0.0.1',
'PORT': '5000',
'USER': 'SuperAdmin',
'PASSWORD': 'SuperAdmin',

}
}

Listing 13: base.yaml

DEDICATED:
default:
HOST: '127.0.0.1'
PORT: '5000'
USER: 'SuperAdmin'
PASSWORD: 'SuperAdmin'

Listing 14: base.json

{
"dedicated": {
"default": {

"HOST": "127.0.0.1",
"PORT": "5000",
"USER": "SuperAdmin",
"PASSWORD": "SuperAdmin"

}
}

}

2.5. Dedicated Server (base) 15

PyPlanet Documentation, Release 0.7.0

2.6 Server files settings (base)

Some of these settings are required to be able to save match settings and to save the blacklisted players for example.

Listing 15: base.py

Map configuration is a set of configuration options related to match settings etc.
Matchsettings filename.
MAP_MATCHSETTINGS = {

'default': 'autosave.txt',
}

You can set this to a automatically generated name:
MAP_MATCHSETTINGS = {

'default': '{server_login}.txt',
}

Blacklist file is managed by the dedicated server and will be loaded and writen to
→˓by PyPlanet once a
player gets blacklisted. The default will be the filename Maniaplanet always uses
→˓and is generic.
BLACKLIST_FILE = {

'default': 'blacklist.txt'
}

Listing 16: base.yaml

MAP_MATCHSETTINGS:
default: 'maplist.txt'

BLACKLIST_FILE:
default: 'blacklist.txt'

Listing 17: base.json

{
"MAP_MATCHSETTINGS": {
"default": "maplist.txt"

},
"BLACKLIST_FILE": {
"default": "blacklist.txt"

}
}

2.7 Storage (base)

This may need some explanation, why is this here? We wanted to be able to run PyPlanet on a separate machine as the
dedicated is. But also access files from the dedicated for investigating maps, loading and writing maps and settings.

To be able to make this simple, and robust, we will implement several so called storage drivers that will work local or
remote. For example: SFTP, FTP, etc.

Local Dedicated

If you run your dedicated server locally, you should use the following setting:

16 Chapter 2. Configuring PyPlanet

PyPlanet Documentation, Release 0.7.0

Listing 18: base.py

STORAGE = {
'default': {
'DRIVER': 'pyplanet.core.storage.drivers.local.LocalDriver',
'OPTIONS': {},

}
}

Listing 19: base.yaml

STORAGE:
default:
DRIVER: 'pyplanet.core.storage.drivers.local.LocalDriver'

Listing 20: base.json

{
"STORAGE": {
"default": {

"DRIVER": "pyplanet.core.storage.drivers.local.LocalDriver",
"OPTIONS": {
}

}
}

}

Using SFTP/SCP/SSH

Error: The SFTP/SCP/SSH driver doesn’t work for now! It’s planned to be implemented later on if there are
enough use-cases.

If your dedicated server is remote, and you want to give access, you can use the SFTP driver (that works over SSH).

STORAGE = {
'default': {
'DRIVER': 'pyplanet.core.storage.drivers.asyncssh.SFTPDriver',
'OPTIONS': {

'HOST': 'remote-hostname.com',
'PORT': 22,
'USERNAME': 'maniaplanet',

Using password:
'PASSWORD': 'only-when-using-password',

Using private/public keys:
'CLIENT_KEYS': [

'/home/mp/.ssh/id_rsa'
],
'PASSPHRASE': 'optional',

Optional:
'KNOWN_HOSTS': '~/.ssh/known_hosts',
'KWARGS': {

(continues on next page)

2.7. Storage (base) 17

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

'CUSTOM_OPTIONS': 'http://asyncssh.readthedocs.io/en/latest/#sftp-client',
}

},
}

}

Note: The SFTP driver has not yet been fully tested. Documentation is available on: http://asyncssh.readthedocs.io/
en/latest/#sftp-client

2.8 Cache (base)

Note: This functionality is not (yet) implemented. Please don’t define CACHE setting.

2.9 Self Upgrade (base)

New since 0.6.0 is the self-upgrader where the master admins can self upgrade the PyPlanet installation from within
the game. You don’t want this to be enabled on shared servers (hosting environments) as it may break your installation.

Listing 21: base.py

SELF_UPGRADE = True

Listing 22: base.yaml

SELF_UPGRADE: true

Listing 23: base.json

{
"SELF_UPGRADE": true

}

Warning: Using the self-upgrade (//upgrade and `pyplanet upgrade`) is very experimental. The method
can break your installation. We don’t guarantee the working of the method.

We advice to use the manual PIP method of upgrading over the in-game upgrading process!

2.10 Songs (base)

Note: This setting only works in combination with the music_server app. Enable the app by adding the app in
your apps.py (or apps.json/apps.yaml).

18 Chapter 2. Configuring PyPlanet

http://asyncssh.readthedocs.io/en/latest/#sftp-client
http://asyncssh.readthedocs.io/en/latest/#sftp-client

PyPlanet Documentation, Release 0.7.0

You can add URL’s of the music to the SONGS list.

Listing 24: base.py

SONGS = {
'default': [

'http://urltoogg'
}

}

Listing 25: base.yaml

SONGS:
default:

- 'http://urltoogg'

Listing 26: base.json

{
"SONGS": {

"default": [
"http://urltoogg"

}
}

}

2.11 Logging (base)

By default (from version 0.5.0) rotating logging is enabled by default but writing is disabled by default. The settings
bellow can be adjusted to meet your requirements.

Listing 27: base.py

LOGGING_WRITE_LOGS = True
LOGGING_ROTATE_LOGS = True
LOGGING_DIRECTORY = 'logs'

Listing 28: base.yaml

LOGGING_WRITE_LOGS: true
LOGGING_ROTATE_LOGS: true
LOGGING_DIRECTORY: 'logs'

2.11. Logging (base) 19

PyPlanet Documentation, Release 0.7.0

Listing 29: base.json

{
"LOGGING_WRITE_LOGS": true,
"LOGGING_ROTATE_LOGS": true,
"LOGGING_DIRECTORY": "logs"

}

2.12 Enabling apps (apps)

You can enable apps in the APPS setting. This is pretty simple and straight forward. The order doesn’t make a
difference when starting/loading PyPlanet.

Listing 30: apps.py

APPS = {
'default': [
'pyplanet.apps.contrib.admin',
'pyplanet.apps.contrib.jukebox',
'pyplanet.apps.contrib.karma',
'pyplanet.apps.contrib.local_records',
'pyplanet.apps.contrib.dedimania',
'pyplanet.apps.contrib.players',
'pyplanet.apps.contrib.info',
'pyplanet.apps.contrib.mx',
'pyplanet.apps.contrib.transactions',

New since 0.4.0:
'pyplanet.apps.contrib.sector_times',
'pyplanet.apps.contrib.dynamic_points',

New since 0.5.0:
'pyplanet.apps.contrib.clock',
'pyplanet.apps.contrib.best_cps',
'pyplanet.apps.contrib.voting',

New since 0.6.0:
'pyplanet.apps.contrib.queue',
'pyplanet.apps.contrib.ads',
'pyplanet.apps.contrib.music_server',

],
}

Listing 31: apps.yaml

apps:
default:
- 'pyplanet.apps.contrib.admin'
- 'pyplanet.apps.contrib.jukebox'
- 'pyplanet.apps.contrib.karma'
- 'pyplanet.apps.contrib.local_records'
- 'pyplanet.apps.contrib.dedimania'
- 'pyplanet.apps.contrib.players'
- 'pyplanet.apps.contrib.info'

(continues on next page)

20 Chapter 2. Configuring PyPlanet

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

- 'pyplanet.apps.contrib.mx'
- 'pyplanet.apps.contrib.transactions'

New since 0.4.0:
- 'pyplanet.apps.contrib.sector_times'
- 'pyplanet.apps.contrib.dynamic_points'

New since 0.5.0:
- 'pyplanet.apps.contrib.clock'
- 'pyplanet.apps.contrib.best_cps'
- 'pyplanet.apps.contrib.voting'

New since 0.6.0:
- 'pyplanet.apps.contrib.queue'
- 'pyplanet.apps.contrib.ads'
- 'pyplanet.apps.contrib.music_server'

Listing 32: apps.json

{
"APPS": {
"default": [
"pyplanet.apps.contrib.admin",
"pyplanet.apps.contrib.jukebox",
"pyplanet.apps.contrib.karma",
"pyplanet.apps.contrib.local_records",
"pyplanet.apps.contrib.dedimania",
"pyplanet.apps.contrib.players",
"pyplanet.apps.contrib.info",
"pyplanet.apps.contrib.mx",
"pyplanet.apps.contrib.transactions",

"pyplanet.apps.contrib.live_rankings",
"pyplanet.apps.contrib.sector_times",

"pyplanet.apps.contrib.clock",
"pyplanet.apps.contrib.best_cps",
"pyplanet.apps.contrib.voting",

"pyplanet.apps.contrib.queue",
"pyplanet.apps.contrib.ads",
"pyplanet.apps.contrib.music_server"

]
}

}

Note: When new contributed apps will come available, you have to manually enable it in your settings. Please take a
look at our Change Log for details on changes.

2.12. Enabling apps (apps) 21

PyPlanet Documentation, Release 0.7.0

22 Chapter 2. Configuring PyPlanet

CHAPTER

THREE

STARTING PYPLANET

Contents

• Starting PyPlanet

– Start and fork to PID file (Linux)

– Start/stop with Screen (Linux)

– Install SystemD Service (Linux)

– Start standalone and in foreground (Linux and Windows)

After following the instructions on how to install and configure PyPlanet you are ready to start up the controller itself.

By default, PyPlanet will always run in the foreground. That’s why we have several steps to make PyPlanet run in the
background and as a service on your server. As a side-note we also have the screen method described. It’s a matter of
preference and support.

Hint: If you use an virtual environment, make sure it’s activated. We will not show this in some instructions, but
always activate before starting PyPlanet.

3.1 Start and fork to PID file (Linux)

This is available from PyPlanet 0.5.0. With this feature you can start PyPlanet and let it detach itself and write a
so called PID file which contain the process ID of the detached process. This is only available on Linux systems.

3.1.1 1. Starting detached

Starting detached is as simple as it seems to be. Look at the starting command bellow and you will understand how to
start PyPlanet detached.

./manage.py start --detach --pid-file=pyplanet.pid

This way you can create your own startup scripts. You can terminate PyPlanet by using the following command:

kill -SIGTERM `cat pyplanet.pid`

23

PyPlanet Documentation, Release 0.7.0

3.2 Start/stop with Screen (Linux)

Screen is a feature on Linux distributions that makes it possible to start a virtual terminal window, and keep
the terminal open in the background for as long as required. You can watch or control the screen from multiple
SSH sessions, making it ideal for platforms that require multiuser access to the servers while not require the
root privileges required for the services.

3.2.1 1. Installation of screen

To use Screen for PyPlanet you have to install it for your OS.

Debian / Ubuntu::

sudo apt-get install screen

Fedora / RHEL:

sudo yum install screen

3.2.2 2. Start a new screen

You can start a new screen session with this command. Remember that you only have to do this once for starting a
new session. After executing this command you will create and directly attach to this screen instance.

screen -S name-of-screen

3.2.3 3. Open a screen

If you have followed step 2, please skip this step, this step is meant for so called ‘reattaching’ to the screen.

To list the screens on this user account use: screen -ls.

To reattach to a deattached screen, use: screen -r name-of-screen. If you can’t attach, you might have
another session attached or need to use the numeric screen id’s from the list command.

To reattach to an already attached screen, use: screen -x name-of-screen. Again, if this fails, try the numeric
id from the list command.

From now you are in the virtual terminal session, when you accidentally disconnect your SSH tunnel, the process
inside the screen will still be active!

3.2.4 4. Start PyPlanet

Make sure you activated your virtual environment first.

Head to your projects folder where the file manage.py is located in your terminal and execute the following com-
mand:

./manage.py start

This will start your PyPlanet project environment(s).

24 Chapter 3. Starting PyPlanet

PyPlanet Documentation, Release 0.7.0

3.2.5 5. Leaving the screen

To leave the screen the right way (deattach) you have to do the following keyboard combination:

CTRL+A then release, and press D.

If you want to exit and destroy the screen, just cancel all programs inside, and type logout or use CTRL+D.

3.3 Install SystemD Service (Linux)

SystemD is a pretty new init system that is included in the newest distributions. For example, Ubuntu 16.04
and higher, Debian 8 and higher make use of SystemD. SystemD will replace the old sysvinit system and make
it easy to start/stop and automatically restart services (including during the OS boot)

Warning: This method is slightly harder, and require you to have root rights al the time (even to (re)start).

This also requires you to use PyEnv.

3.3.1 1. Installing the service

Head towards your systemd configuration folder by executing the following command(s):

Debian / Ubuntu / Fedora / RHEL / Most other Linux distros::

cd /etc/systemd/system

3.3.2 2. Determinate paths

First of all, we have to know the following paths:

1. Full path to the PyPlanet executable.

2. Full path to the project root.

3. The user and group you want to run PyPlanet under.

4. Your service name. (in our examples pyplanet.service and pyplanet)

2.1. Full PyPlanet path

You can check the full path to the pyplanet cli interface by executing this: whereis pyplanet. The outcome is
the path, in our example it’s /home/toffe/.pyenv/shims/pyplanet.

2.2. Full project path

Where is the root of the PyPlanet project located, this is the folder where the settings folder and the manage.py
file exist. In our example it’s /path/to/your/pyplanet/project.

3.3. Install SystemD Service (Linux) 25

PyPlanet Documentation, Release 0.7.0

2.3. Running user and group

It’s important to not run as root! That’s why you want to use a secondary user on your system.

Find out the current user and group name with the following command: echo id (don’t execute with sudo!).

This will output something like this:

uid=1000(toffe) gid=1000(toffe) groups=1000(toffe),4(adm),24(cdrom),27(sudo),30(dip),
→˓46(plugdev),113(lpadmin),128(sambashare),133(wireshark),140(kvm),141(libvirtd),
→˓998(bumblebee),999(docker)

We only need two items in there, and its the value inside of the brackets of the first item (uid=x), in our case toffe
which is the user.

And the second value is the group, just after the gid=x, and inside the brackets, in our case also toffe.

3.3.3 3. Create the service definition file

After going to the right location you have to create a new file called pyplanet.service. You can rename it as
you want!

sudo nano pyplanet.service
Or use your os editor, like vim or pico. Make sure you are still in the folder from
→˓step 1!

After opening the editor, paste the contents bellow and change the contents according the steps above.

[Unit]
After=syslog.target network.target

[Service]
WorkingDirectory=/path/to/your/pyplanet/project
Environment="PYTHONPATH=/path/to/your/pyplanet/project"
ExecStart=/home/toffe/.pyenv/shims/pyplanet start --settings=settings
SyslogIdentifier=pyplanet

Restart=always
StandardOutput=syslog
StandardError=syslog
User=toffe
Group=toffe

[Install]
WantedBy=multi-user.target

After changing the contents, save the file and continue to the next step.

3.3.4 4. Reload systemd

After installing the new service file you have to let systemd know that you changed something. Do this with the
following command:

sudo systemctl daemon-reload

26 Chapter 3. Starting PyPlanet

PyPlanet Documentation, Release 0.7.0

3.3.5 5. Starting/stopping PyPlanet

From now you can start, stop and restart your controller with the following commands: (the pyplanet name is your
service file name).

systemctl start pyplanet
systemctl stop pyplanet
systemctl restart pyplanet

To view the logs of the PyPlanet instance, type one of this commands:

journalctl --unit pyplanet.service -xe
journalctl --unit pyplanet.service -f

3.3.6 6. Starting at boot

Activate the service to have it started when your machine starts.

systemctl enable pyplanet

3.4 Start standalone and in foreground (Linux and Windows)

Warning: When you are using SSH to remotely access the server running PyPlanet, this starting option should
only be used while testing your server. The moment you close the SSH terminal window, your PyPlanet instance
will shutdown (crash). Use one of the methods above, if you want to run PyPlanet without having the terminal
window open at all times.

3.4.1 1. Go to your project folder

Make sure you change directory to your project root (contains the manage.py file).

cd /my/project/location

3.4.2 2. Activate virtual environment

Make sure you activated your virtual environment.

Linux / Mac OS
pyenv activate pyplanet

Windows
env\Scripts\activate.bat

Tip: Don’t know how to setup the environment exactly? Head to Windows or Linux guides.

3.4. Start standalone and in foreground (Linux and Windows) 27

PyPlanet Documentation, Release 0.7.0

3.4.3 3. Start PyPlanet

Linux:
./manage.py start

Windows
python manage.py start

This will start your PyPlanet setup.

28 Chapter 3. Starting PyPlanet

CHAPTER

FOUR

UPGRADING PYPLANET

Upgrading an existing installation isn’t difficult at all. The only thing you really need to be careful about is the breaking
changes.

Before upgrading, please check your existing version, and check the Change Log Document.

Since 0.6.0 you have two methods of upgrading. The in-game method and the manual PIP method. We strongly
advice you to use the manual PIP method because the in-game upgrade can be unstable with big releases!

Note: We assume you installed PyPlanet with PyPi and initiated your project folder with init_project. If you
installed directly from Git, this document may not be suited for you.

Warning: When using the executable method (downloaded from the GitHub releases page) you will have to
redownload and replace the binary file instead of these steps! (Executable currently not released anymore).

4.1 In-game upgrade method

To use this method your current version needs to be 0.6.0 or higher. You can use the following command to execute
the upgrade. You can also select a specific version (for example beta or rc) with the command.

//upgrade
-- or --
//upgrade 0.6.0-rc1

PyPlanet will reboot when the installation is complete. You might want to edit the apps.py to activate the new apps.
On the configuration page you can always find the latest apps entries.

Warning: This method can be unstable. It’s hard to fully adjust to your installation method and environment. We
recommend making a backup of your installation, or have the knowledge of restoring or recreating the virtualenv
or installation!

29

PyPlanet Documentation, Release 0.7.0

4.2 Manual PIP method

4.2.1 1. Check requirements.txt

In your project root you will find a file called requirements.txt. This file is the input of the pip manager in the
next commands. So it needs to be well maintained.

By default you will see something like this:

pyplanet>=0.0.1,<1.0.0

This will tell pip to install a PyPlanet version above 0.0.1, but under 1.0.0. This way you will prevent sudden breaking
changes that may occur in big new releases, or breaking changes that were introduced to a major Maniaplanet update.

If you want to upgrade to a newer major version, for example 1.2.0 to 2.0.0. you have to change these numbers here.
If not, continue to the next step

4.2.2 2. Activate env

If you use virtualenv or pyenv it’s now time to activate your virtual environment. Do so with the commands.

Linux
source env/bin/activate

PyEnv
pyenv activate pyplanet

Windows
env\Scripts\Activate.bat

4.2.3 3. Upgrade PyPlanet core

Now you can run the pip command that will upgrade your installation.

pip install -r requirements.txt --upgrade

Warning: You may find errors during installation, make sure you have openssl, gcc, python
development installed on your os! See the installation manual on how to install this.

4.2.4 4. Upgrade settings

See the changelog for new or updated settings and apply the changes now.

4.2.5 5. Upgrade apps setting

It can be possible that we introduced new apps in the update. You will find this in the changelog, and all newest apps
will always be provided in the documentation.

On the configuration page you will always find the latest apps settings entries.

30 Chapter 4. Upgrading PyPlanet

PyPlanet Documentation, Release 0.7.0

4.2.6 6. Start PyPlanet

At the next start it will apply any database migrations automatically.

4.2. Manual PIP method 31

PyPlanet Documentation, Release 0.7.0

32 Chapter 4. Upgrading PyPlanet

CHAPTER

FIVE

MIGRATING FROM OLD CONTROLLER

5.1 Migrating from Xaseco2

We provide a basic convert procedure to convert your database from XAseco2 to PyPlanet. You will keep these data:

• Player basic information.

• Driven times by players.

• Map basic information.

• Local records. (records table).

• Karma.

As we don’t have anything yet that can hold statistics except the times table (rs_times), we cannot convert these
unfortunately. We will soon have a store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format xaseco2 --source-db-
→˓username root --source-db-name xaseco2

5.2 Migrating from UAseco

We provide a basic convert procedure to convert your database from UAseco to PyPlanet. You will keep these data:

• Player basic information.

• Driven times by players.

• Map basic information.

• Local records. (uaseco_records table).

• Karma.

As we don’t have anything yet that can hold statistics except the times table (uaseco_times), we cannot convert
these unfortunately. We will soon have a store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format uaseco --source-db-
→˓username root --source-db-name uaseco

33

PyPlanet Documentation, Release 0.7.0

Warning: The UAseco converter is new since version 0.4.4.

Note: For additional arguments, see python manage.py db_convert –help

5.3 Migrating from eXpansion

We provide a basic convert procedure to convert your database from eXpansion to PyPlanet. You will keep these data:

• Player basic information.

• Map basic information.

• Local records.

• Karma.

As we don’t have anything yet that can hold statistics and the architecture of those statistics is very different in
eXpansion, we cannot convert these unfortunately. We will soon have a store for player stats, like donations, total
played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format expansion --source-db-
→˓username root --source-db-name expansion

Warning: The eXpansion converter is new since version 0.5.0. This has not yet been fully tested with several
installations. Make sure your source is using utf8 or utf8mb4_unicode collate.

Note: For additional arguments, see python manage.py db_convert –help

5.4 Migrating from ManiaControl

We provide a basic convert procedure to convert your database from ManiaControl to PyPlanet. You will keep these
data:

• Player basic information.

• Map basic information.

• Local records. (uaseco_records table).

• Karma.

As we don’t have anything yet that can hold statistics, we cannot convert these unfortunately. We will soon have a
store for player stats, like donations, total played time, etc.

Command to convert, change the parameters to meet your needs:

python manage.py db_convert --pool default --source-format maniacontrol --source-db-
→˓username root --source-db-name maniacontrol

34 Chapter 5. Migrating from old controller

PyPlanet Documentation, Release 0.7.0

Warning: The ManiaControl converter is new since version 0.4.5

Note: For additional arguments, see python manage.py db_convert –help

5.4. Migrating from ManiaControl 35

PyPlanet Documentation, Release 0.7.0

36 Chapter 5. Migrating from old controller

CHAPTER

SIX

HOW TO’S AND TROUBLESHOOTING

6.1 Correct Database Collation (MySQL)

Because of the Emoji and other symbols used in MP4 and later you are required to have the utf8mb4_unicode_ci
collation for databases, tables and columns in MySQL.

If you didn’t set it right at the first start you will get a message when starting the controller. To correct this you can
execute the following query. You have to change one part with the database name:

USE information_schema;

SELECT concat("ALTER DATABASE `",table_schema,
"` CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci;") as _sql

FROM `TABLES`
WHERE table_schema like "pyplanet"
GROUP BY table_schema;

SELECT concat("ALTER TABLE `",table_schema,"`.`",table_name,
"` CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;") as _

→˓sql
FROM `TABLES`

WHERE table_schema like "pyplanet"
GROUP BY table_schema, table_name;

In this code-snippet, pyplanet is the database name. Make sure you change it to your database name.

The results you will get are queries that you need to execute one by one. Please make sure you create a backup before
executing the queries.

6.2 MySQL Complaining about large indexes (1000 bytes)

Because we use utf8mb4_unicode_ci characters can take more bytes and will reach the limits of the MySQL
database engine.

For PyPlanet it’s required to have your database storage engine set to InnoDB! It’s currently an issue that we can’t
provide the storage engine when creating tables. This makes it kinda frustrating and the workaround for now is to set
your MySQL Servers default storage engine to InnoDB. To do this, find your my.ini in your MySQL installation, in
most cases this is located in the installation directory on Windows, or somewhere in /etc/mysql or the file /etc/my.ini
on Linux systems.

Please find the following text in the my.ini file default-storage-engine. When you can find the line, change
it so it looks like the snippet given bellow. If you can’t find the entry in the file, add it to the [mysqld] section, and
make sure it looks like the snippet bellow.

37

PyPlanet Documentation, Release 0.7.0

default-storage-engine=InnoDB

Warning: We are looking for a better way to solve this issue, but we are limited to the Peewee library for creating
the tables.

38 Chapter 6. How To’s and troubleshooting

CHAPTER

SEVEN

ADMIN

7.1 Information

Name: pyplanet.apps.contrib.admin

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

7.2 Features

This app includes the main admin features PyPlanet has to offer. It’s features can be seperated in to these three areas:

• Maps: skip, restart

• Players: mute, kick, ban

• Server: set server/spectator password

7.3 Commands

7.3.1 PyPlanet

Reboot PyPlanet Pool Process

Command: //reboot

Parameters: None.

Functionality: Reboot pyplanet pool process.

Required permission: admin:reboot, requires admin level 3.

Toggle the admin toolbar personally

Command: //toolbar

Parameters: None.

Functionality: Toggle the visibility of the admin toolbar personally.

Required permission: at least admin level 1.

39

PyPlanet Documentation, Release 0.7.0

7.3.2 Maps

Skip map

Command: //next / //skip

Parameters: None.

Functionality: Skips to the next map.

Required permission: admin:next, requires admin level 1.

Restart map

Command: //restart / //res / //rs

Parameters: None.

Functionality: Restarts the current map.

Required permission: admin:restart, requires admin level 1.

Replay map

Command: //replay

Parameters: None.

Functionality: Queue the current map to be replayed

Required permission: admin:replay, requires admin level 1.

Add Local map

Command: //add local

Parameters:

• Local file name or path.

Functionality: Add map from local server disk.

Required permission: admin:add_local, requires admin level 2.

Open Map browser

Command: //localmaps

Parameters: None.

Functionality: Opens a browser which can be used to add local maps to the server.

Required permission: admin:localmaps, requires admin level 3.

40 Chapter 7. Admin

PyPlanet Documentation, Release 0.7.0

Write Map list

Command: //writemaplist / //wml

Parameters:

• Optional match settings file. Will use the file from your settings if not provided!

Functionality: Write maplist to match settings file.

Required permission: admin:write_map_list, requires admin level 2.

Read Map list

Command: //readmaplist / //rml

Parameters:

• Match settings file.

Functionality: Read maplist from the match settings file.

Required permission: admin:read_map_list, requires admin level 2.

Shuffle Map list

Command: //shuffle

Parameters:

•

Functionality: Shuffle and reload map list from disk!

Required permission: admin:shuffle, requires admin level 2.

Remove Map

Command: //remove

Parameters:

• Map number given, the ID column from database. If not given, the current map will be removed!

Functionality: Remove map from loadedd map list. (Doesn’t write the maplist to disk!). This command doesn’t
remove the actual map file!

Required permission: admin:remove_map, requires admin level 2.

Erase Map

Command: //erase

Parameters:

• Map number given, the ID column from database. If not given, the current map will be removed!

Functionality: Remove map from loadedd map list. (Doesn’t write the maplist to disk!). Also removes the map file
from the disk!

Required permission: admin:remove_map, requires admin level 2.

7.3. Commands 41

PyPlanet Documentation, Release 0.7.0

Extend TA limit

Command: //extend

Parameters:

• Time in seconds to extend the timer with, ignore this parameter to double the time.

Functionality: Extend the TA limit temporary with given seconds or double the current TA limit.

Required permission: admin:extend, requires admin level 1.

7.3.3 Players

Force player to spec

Command: //forcespec

Parameters:

• Player login.

Functionality: Force player into spectator.

Required permission: admin:force_spec, requires admin level 1.

Force player to player

Command: //forceplayer

Parameters:

• Player login.

Functionality: Force player into player slot.

Required permission: admin:force_player, requires admin level 1.

Force player to team

Command: //forceteam

Parameters:

• Player login.

• Team identifier (0/blue or 1/red)

Functionality: Force player into a specific team.

Required permission: admin:force_team, requires admin level 1.

Switch player to team

Command: //switchteam

Parameters:

• Player login.

Functionality: Switches the player into the other team.

42 Chapter 7. Admin

PyPlanet Documentation, Release 0.7.0

Required permission: admin:switch_team, requires admin level 1.

Command: //warn / //warning

Parameters:

• Player login.

Functionality: Displays a warning message in chat for the player

Required permission: admin:warn, requires admin level 1.

Mute player

Command: //mute / //ignore

Parameters:

• Player login.

Functionality: Mutes the player, messages won’t appear in server chat.

Required permission: admin:ignore, requires admin level 1.

Unmute player

Command: //unmute / //unignore

Parameters:

• Player login.

Functionality: Unmutes the player, messages will appear in server chat again.

Required permission: admin:unignore, requires admin level 1.

Kick player

Command: //kick

Parameters:

• Player login.

Functionality: Kicks the player from the server.

Required permission: admin:kick, requires admin level 1.

Ban player

Command: //ban

Parameters:

• Player login.

Functionality: Bans the player from the server.

Required permission: admin:ban, requires admin level 2.

7.3. Commands 43

PyPlanet Documentation, Release 0.7.0

Unban player

Command: //unban

Parameters:

• Player login.

Functionality: Unbans the player from the server.

Required permission: admin:unban, requires admin level 2.

Change user admin level

Command: //level

Parameters:

• Player login.

• (Optional) Level: 0 = player, 1 = operator, 2 = admin, 3 = master admin. Leave empty to remove level (0).

Functionality: Changes the admin permission level of the player.

Required permission: admin:manage_admins, requires admin level 2.

7.3.4 Game Flow

Force round to end

Command: //endround

Parameters: None

Functionality: Force the trackmania round to an end.

Required permission: admin:end_round, requires admin level 2.

Force WarmUp round to end

Command: //endwuround

Parameters: None

Functionality: Force the trackmania WarmUp round to an end.

Required permission: admin:end_round, requires admin level 2.

Force WarmUp to an end

Command: //endwu

Parameters: None

Functionality: Force the whole WarmUp to an end.

Required permission: admin:end_round, requires admin level 2.

44 Chapter 7. Admin

PyPlanet Documentation, Release 0.7.0

Set rounds points (Points repartition)

Command: //pointsrepartition / //pointsrep

Parameters:

• Points per place, top to bottom, separated with either spaces or commas.

Functionality: Set the rounds points (points per player and place it ends in an round).

Required permission: admin:points_repartition, requires admin level 2.

Write Blacklist

Command: //writeblacklist / //wbl

Parameters:

• Optional blacklist file. Will use the file from your settings if not provided!

Functionality: Write blacklist to file.

Required permission: admin:write_blacklist, requires admin level 3.

Read Blacklist

Command: //readblacklist / //rbl

Parameters:

• Blacklist file (optional).

Functionality: Read blacklist from the file given or the one in the settings file.

Required permission: admin:read_blacklist, requires admin level 3.

7.3.5 Server

Set server name

Command: //servername

Parameters:

• Server name.

Functionality: Changes the server name.

Required permission: admin:servername, requires admin level 2.

Set game mode

Command: //mode

Parameters:

• Game mode ‘ta’, ‘laps’, ‘rounds’, ‘cup’ or any script name (e.g. ‘Rounds.Script.txt’)

Functionality: Changes the server game mode script.

Required permission: admin:mode, requires admin level 2.

7.3. Commands 45

PyPlanet Documentation, Release 0.7.0

Get/set game mode settings

Command: //modesettings

Parameters: None, or: * Setting name * New setting value

Functionality: Displays a list of current mode settings (no parameters) or changes a setting according with the given
parameters.

Required permission: admin:mode, requires admin level 2.

Set server password

Command: //setpassword / //srvpass

Parameters:

• Server password (none or empty for no password).

Functionality: Changes the server password.

Required permission: admin:password, requires admin level 2.

Set server password

Command: //setspecpassword / //spectpass

Parameters:

• Spectator password (none or empty for no password).

Functionality: Changes the spectator password.

Required permission: admin:password, requires admin level 2.

Cancel CallVote

Command: //cancelcallvote / //cancelcall

Parameters: None

Functionality: Cancel a current started call vote.

Required permission: admin:callvoting, requires admin level 1.

7.4 Signal handlers

None.

46 Chapter 7. Admin

CHAPTER

EIGHT

ADVERTISEMENTS

8.1 Information

Name: pyplanet.apps.contrib.ads

Depends on:

•

Game: All

8.2 Features

This app provides buttons, banners and other advertisements assets. For example it shows a Discord logo or a PayPal
button. The app has the following features: - Show Discord join button. - Show how many users online in Discord. -
Show PayPal donate button.

Setup Discord:

1. Get your discord join link and make sure it does not expire.

2. Get your discord server ID. (you might need to enable developer settings)

3. Enable the widget of your discord server in the server settings.

4. Start PyPlanet with this app enabled.

5. Type //settings and edit two discord related fields (join URL and ID)

Setup PayPal:

1. Create the PayPal donation link for you server account

2. Start PyPlanet with this app enabled.

3. Type //settings and fill the PayPal related field (Donation URL)

8.3 Commands

8.3.1 Display Discord Server Info

Command: /discord

Parameters: None.

47

PyPlanet Documentation, Release 0.7.0

Functionality: Displays the number of users and bots on the server.

Required permission: None.

8.3.2 Display PayPal Link

Command: /paypal

Parameters: None.

Functionality: Display the PayPal link in chat.

Required permission: None.

8.4 Signal handlers

8.4.1 Player connect

Signal pyplanet.apps.core.maniaplanet.callbacks.player.player_connect Functionality:

Displaying widgets

48 Chapter 8. Advertisements

CHAPTER

NINE

BEST CPS

9.1 Information

Name: pyplanet.apps.contrib.best_cps

Depends on: core.maniaplanet

Game: TrackMania

Mode: TimeAttack

9.2 Features

This app shows the best driven time at each CP.

• Quick display on the top of the UI for the first 18 CPs (3 rows)

• Click on header to open up list view for all CPs

9.3 Installation

Just add this line to your apps.py file:

APPS = {
'default': [
'...',
'pyplanet.apps.contrib.best_cps', # Add this line.
'...',

]
}

9.4 Commands

•

49

PyPlanet Documentation, Release 0.7.0

9.5 Signal handlers

9.5.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Removes CP times from last round.

9.5.2 Player waypoint

Signal: pyplanet.apps.core.trackmania.callbacks.waypoint

Functionality: Process and update widget.

9.5.3 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Display widget.

9.5.4 Map End

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_start__end

Functionality: Update the widget (for map restarts)

50 Chapter 9. Best CPs

CHAPTER

TEN

CLOCK

10.1 Information

Name: pyplanet.apps.contrib.clock

Depends on: core.maniaplanet

Game: TrackMania, Shootmania

10.2 Features

This app shows a digital clock displaying the current time on the UI. This widget is using ManiaScript.

10.3 Signal handlers

10.3.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Displays the clock.

10.3.2 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Displays the clock widget for the connecting player.

51

PyPlanet Documentation, Release 0.7.0

52 Chapter 10. Clock

CHAPTER

ELEVEN

DEDIMANIA RECORDS

11.1 Information

Name: pyplanet.apps.contrib.dedimania

Depends on: core.maniaplanet

Game: TrackMania

Mode: TimeAttack + Rounds

11.2 Features

This app enables players to have their map records stored at Dedimania.net. Displays widget + list for records.

Setup:

1. Make sure you generate a Dedimania Code for your server.

2. Start PyPlanet with this app enabled.

3. Type //settings and edit the two settings for dedimania, paste the code in the code entry.

4. Save and restart PyPlanet.

11.3 Commands

11.3.1 Compare checkpoints

Command: /dedicps [record nr to compare with]

Parameters:

• Optional record number to compare with, will compare with record nr 1 if none is given.

Functionality: Displays a list with checkpoint times of the record and your dedimania record showing the exact
differences per checkpoint.

Required permission: None.

53

PyPlanet Documentation, Release 0.7.0

11.4 Signal handlers

11.4.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Retrieves records for the new map and updates the widget.

11.4.2 Map start

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_start

Functionality: Used to handle map restarts with saving of dedimania records.

11.4.3 Map end

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_end

Functionality: Used to save dedimania records.

11.4.4 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Displaying widget + sending dedimania request.

11.4.5 Player disconnect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Sending dedimania request.

11.4.6 Player finish

Signal: pyplanet.apps.core.trackmania.finish

Functionality: Registers new records.

54 Chapter 11. Dedimania Records

CHAPTER

TWELVE

DYNAMIC POINTS

12.1 Information

Name: pyplanet.apps.contrib.dynamic_points

Depends on: core.maniaplanet

Game: ShootMania

12.2 Features

This app enables the dynamic points limit in Shootmania Royal. Setup with the //settings command!

12.3 Signal handlers

12.3.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Apply the new limit if settings allow us to do.

12.3.2 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Adjust the limit

12.3.3 Player disconnect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_disconnect

Functionality: Adjust the limit

12.3.4 Player info change

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_info_changed

Functionality: Adjust the limit

55

PyPlanet Documentation, Release 0.7.0

56 Chapter 12. Dynamic Points

CHAPTER

THIRTEEN

JUKEBOX

13.1 Information

Name: pyplanet.apps.contrib.jukebox

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

13.2 Features

This app enables players to schedule maps from the maplist to be played next.

13.3 Commands

13.3.1 Display maplist

Command: /list

Parameters: None or search string.

Functionality: Displays a list of maps currently on the server. First parameter added to command will search the list
accordingly.

Required permission: None.

13.3.2 Display jukebox list

Command: /jukebox list / /jukebox display

Parameters: None.

Functionality: Displays a list of maps currently in the jukebox.

Required permission: None.

57

PyPlanet Documentation, Release 0.7.0

13.3.3 Drop jukeboxed map

Command: /jukebox drop

Parameters: None.

Functionality: Drops the last (if any) map juked by the player from the jukebox.

Required permission: None.

13.3.4 Clear jukebox

Command: /admin clearjukebox / /admin cjb / /jukebox clear

Parameters: None.

Functionality: Clears the current jukebox list.

Required permission: jukebox:clear, requires admin level 1.

13.4 Signal handlers

13.4.1 Podium start

Signal: pyplanet.apps.core.maniaplanet.callbacks.flow.podium_start

Functionality: Sets the next map to be the first one in the jukebox.

58 Chapter 13. Jukebox

CHAPTER

FOURTEEN

KARMA

14.1 Information

Name: pyplanet.apps.contrib.karma

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

14.2 Features

This app enables players to vote on maps and provides a karma widget.

14.3 Commands

14.3.1 Display votes

Command: /whokarma

Parameters: None.

Functionality: Displays a list of votes cast on the current map.

Required permission: None.

14.4 Signal handlers

14.4.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Retrieves votes for the new map and updates the karma widget.

14.4.2 Player chat

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_chat

Functionality: Handles chat-based voting (++ or --).

59

PyPlanet Documentation, Release 0.7.0

14.4.3 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Displays the karma widget for the connecting player.

60 Chapter 14. Karma

CHAPTER

FIFTEEN

LIVE RANKINGS

15.1 Information

Name: pyplanet.apps.contrib.live_rankings

Depends on: core.maniaplanet

Game: TrackMania

15.2 Features

This app enables the live rankings widget for the game modes:

• Laps (Live cp statistics).

• Rounds (Match sum of points).

• TimeAttack (Top times of players).

• Cup & Team (Points gathered).

15.3 Installation

Just add this line to your apps.py file:

APPS = {
'default': [
'...',
'pyplanet.apps.contrib.live_rankings', # Add this line.
'...',

]
}

15.4 Commands

•

61

PyPlanet Documentation, Release 0.7.0

15.5 Signal handlers

15.5.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_start

Functionality: Clears rankings and widget

15.5.2 Player finish

Signal: pyplanet.apps.core.trackmania.callbacks.finish

Functionality: Process and update widget.

15.5.3 Player waypoint

Signal: pyplanet.apps.core.trackmania.callbacks.waypoint

Functionality: Process and update widget.

15.5.4 Player give up

Signal: pyplanet.apps.core.trackmania.callbacks.give_up

Functionality: Set the time to DNF in specific modes.

15.5.5 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Display widget.

15.5.6 Scores

Signal: pyplanet.apps.core.trackmania.callbacks.scores

Functionality: Update the widget with the driven scores.

62 Chapter 15. Live Rankings

CHAPTER

SIXTEEN

LOCAL RECORDS

16.1 Information

Name: pyplanet.apps.contrib.local_records

Depends on: core.maniaplanet

Game: TrackMania

16.2 Features

This app enables players to have their map records stored and displays the records in a widget.

16.3 Commands

16.3.1 Display local records

Command: /records

Parameters: None.

Functionality: Displays a list of local records on the current map.

Required permission: None.

16.3.2 Compare checkpoints

Command: /localcps [record nr to compare with]

Parameters:

• Optional record number to compare with, will compare with record nr 1 if none is given.

Functionality: Displays a list with checkpoint times of the record and your local record showing the exact differences
per checkpoint.

Required permission: None.

63

PyPlanet Documentation, Release 0.7.0

16.4 Signal handlers

16.4.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Retrieves records for the new map and updates the widget.

16.4.2 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Displays the records widget for the connecting player.

16.4.3 Player finish

Signal: pyplanet.apps.core.trackmania.finish

Functionality: Registers new records.

64 Chapter 16. Local Records

CHAPTER

SEVENTEEN

MAP INFO

17.1 Information

Name: pyplanet.apps.contrib.mapinfo

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

17.2 Features

Displays basic map information in widget.

17.3 Commands

None.

17.4 Signal handlers

17.4.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Updates widget with new map information.

17.4.2 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Displays the map info widget for the connecting player.

65

PyPlanet Documentation, Release 0.7.0

66 Chapter 17. Map Info

CHAPTER

EIGHTEEN

MUSIC SERVER

18.1 Information

Name: pyplanet.apps.contrib.music_server

Depends on:

•

Game: All

18.2 Features

This app provides the ability to play your own music for all the players in the server.

Setup:

Add URLs to the music files you want to play your settings module (base.py) or directory (base.json / base.yaml) in
the SONGS = [] section. The files must be in the .ogg format for maniaplanet to be able to play them.

18.3 Commands

18.3.1 Display music list

Command: /songlist or /musiclist

Parameters: None.

Functionality: Displays the list of all available songs. Click songs to put them into the playlist.

Required permission: None.

18.3.2 Display Playlist

Command: /playlist

Parameters: None.

Functionality: Display the playlist. Click songs to drop them from the playlist. Users can only drop the songs the
juked themselves.

Required permission: None.

67

PyPlanet Documentation, Release 0.7.0

18.3.3 Current Song

Command: /song

Parameters: None.

Functionality: Prints the Title and Artist of the song currently playing to the chat.

Required permission: None.

18.3.4 Play Song

Command: //play

Parameters: songname URL to music file to be played next.

Functionality: Puts the song into the songlist. It will be gone from it on next restart of PyPlanet.

Required permission: requires admin level 1

18.4 Signal handlers

18.4.1 Map End

Signal pyplanet.apps.core.maniaplanet.callbacks.map.map_end Functionality:

Queue the next song.

68 Chapter 18. Music Server

CHAPTER

NINETEEN

MANIAEXCHANGE

19.1 Information

Name: pyplanet.apps.contrib.mx

Depends on: core.maniaplanet

Game: Any

19.2 Features

Adding maps from Mania-Exchange.

19.3 Commands

19.3.1 Add map(s) from MX

Command: //add mx or //mx add

Parameters:

• ManiaExchange ID(s). One or more with space between it.

Functionality: Adding maps from ManiaExchange to the server.

Required permission: mx:add_remote, requires admin level 3.

19.3.2 Search maps on MX

Command: //mx search

Parameters:

•

Functionality: Search/browse for maps on MX.

Required permission: mx:add_remote, requires admin level 3.

69

PyPlanet Documentation, Release 0.7.0

19.3.3 Add mappack from MX

Command: //mxpack add

Parameters:

• ManiaExchange Pack ID.

Functionality: Adding maps form a specific mappack on ManiaExchange to the server.

Required permission: mx:add_remote, requires admin level 3.

19.3.4 Search mappacks on MX

Command: //mxpack search

Parameters:

•

Functionality: Search/browse for mappacks on MX.

Required permission: mx:add_remote, requires admin level 3.

19.3.5 Get current map info

Command: /mx info

Parameters:

•

Functionality: Get information about the current map from the MX database.

Required permission:

•

70 Chapter 19. ManiaExchange

CHAPTER

TWENTY

PLAYERS

20.1 Information

Name: pyplanet.apps.contrib.players

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

20.2 Features

This app provides the playerlist UI.

20.3 Commands

20.3.1 Display playerlist

Command: /players

Parameters: None.

Functionality: Displays a list of players currently on the server.

Required permission: None.

20.3.2 Show last online date of player

Command: /laston / /lastseen

Parameters:

• Login of the player.

Functionality: Display the last date and time the user has been seen on the server.

Required permission: None.

20.4 Signal handlers

None.

71

PyPlanet Documentation, Release 0.7.0

72 Chapter 20. Players

CHAPTER

TWENTYONE

WAITING QUEUE

21.1 Information

Name: pyplanet.apps.contrib.queue

Depends on: core.maniaplanet

Game: TrackMania or ShootMania

Mode: Any

21.2 Features

This app enables the waiting queue for crowded servers. Players should use the waiting queue on full servers and will
be in a queue where the waiting is fair for all players.

Warning: This app is new in 0.6.0 and is still in BETA. Unexpected behaviour can be expected, please post any
issues to our GitHub project.

21.3 Commands

21.3.1 Show queue list

Command: /queue

Parameters:

•

Functionality: Get the list of the current queue.

Required permission:

•

21.3.2 Clear queue

Command: //queue clear

Parameters:

73

PyPlanet Documentation, Release 0.7.0

•

Functionality: Clear the queue (unqueue all spectators).

Required permission:

• queue:manage_queue (level 2 by default)

21.3.3 Shuffle queue

Command: //queue shuffle

Parameters:

•

Functionality: Shuffle the queue (randomly)

Required permission:

• queue:manage_queue (level 2 by default)

21.4 Signal handlers

21.4.1 Player Info Change

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_info_changed

Functionality: Used to force the release of the player slot when going to spectator

21.4.2 Player enters player slot

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_player_slot

Functionality: Update all views

21.4.3 Player enters spectator slot

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_spectator_slot

Functionality: Update all views

21.4.4 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: When server is full or queue is filled, force to spectator and show message in the chat.

21.4.5 Player disconnect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Remove player from queue if in, clear the data.

74 Chapter 21. Waiting Queue

CHAPTER

TWENTYTWO

SECTOR TIMES

22.1 Information

Name: pyplanet.apps.contrib.sector_times

Depends on: core.maniaplanet

Game: TrackMania

22.2 Features

This app enables comparing the sector times against your best time driven ever (local or dedi record, or the current
session best record). This widget is instant updating and using ManiaScript.

22.3 Signal handlers

22.3.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.map.map_begin

Functionality: Retrieves records for the new map and updates the widget.

22.3.2 Player connect

Signal: pyplanet.apps.core.maniaplanet.callbacks.player.player_connect

Functionality: Displays the records widget for the connecting player.

75

PyPlanet Documentation, Release 0.7.0

76 Chapter 22. Sector Times

CHAPTER

TWENTYTHREE

TRANSACTIONS

Activate with adding 'pyplanet.apps.contrib.transactions.app.Transactions' to your apps.py

23.1 Information

Name: pyplanet.apps.contrib.transactions

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

23.2 Features

Donate, show planets on server and payout players.

23.3 Commands

23.3.1 Donate

Command: /donate

Parameters:

• Amount of planets.

Functionality: Donate planets to the server.

Required permission:

•

23.3.2 Get amount of planets on server

Command: //planets

Parameters: None

Functionality: Get planet

Required permission: admin:planets, requires admin level 3.

77

PyPlanet Documentation, Release 0.7.0

23.3.3 Pay planets to player

Command: //pay

Parameters:

• Player login

• Amount of planets

Functionality: Pay planets to player.

Required permission: admin:pay, requires admin level 3.

23.4 Signal handlers

23.4.1 Map begin

Signal: pyplanet.apps.core.maniaplanet.callbacks.other.bill_updated

Functionality: Update bill signal

78 Chapter 23. Transactions

CHAPTER

TWENTYFOUR

VOTING

24.1 Information

Name: pyplanet.apps.contrib.voting

Depends on: core.maniaplanet

Game: TrackMania, ShootMania

24.2 Features

This app provides chat-based voting for your players.

24.3 Commands

24.3.1 Replay Vote

Command: /replay

Parameters: None.

Functionality: Initiate replay vote.

Required permission: None.

24.3.2 Skip Vote

Command: /skip

Parameters: None.

Functionality: Initiate skip vote.

Required permission: None.

24.3.3 Restart Vote

Command: /restart

Parameters: None.

79

PyPlanet Documentation, Release 0.7.0

Functionality: Initiate instant-restart vote.

Required permission: None.

24.3.4 Extend TimeAttack Time

Command: /extend

Parameters: None.

Functionality: Initiate time extend vote.

Required permission: None.

24.3.5 Vote Yes

Command: /y

Parameters: None.

Functionality: Vote yes, you can also use F5 to vote yes.

Required permission: None.

24.3.6 Vote No

Command: /n

Parameters: None.

Functionality: Vote no, you can also use F6 to vote no.

Required permission: None.

24.3.7 Cancel Vote

Command: //cancel

Parameters: None.

Functionality: Cancel current chat-based vote.

Required permission: voting:cancel, requires admin level 1.

24.4 Signal handlers

None.

80 Chapter 24. Voting

CHAPTER

TWENTYFIVE

STATISTICS

25.1 Information

Name: pyplanet.apps.core.statistics

Depends on: core.maniaplanet

Game: TrackMania & ShootMania

25.2 Features

This app keeps track of the general statistics across the games.

25.3 Commands

25.3.1 Display Top Donators

Command: /topdons

Parameters: None.

Functionality: Display a list of the top donating players on the server.

Required permission: None.

25.3.2 Display Top Active

Command: /topactive

Parameters: None.

Functionality: Display a list of the top active players on the server.

Required permission: None.

25.3.3 Display Top Players (based on records) (TM only)

Command: /topsums

Parameters: None.

81

PyPlanet Documentation, Release 0.7.0

Functionality: Display a list of best players according to the top 3 records on maps.

Required permission: None.

25.3.4 Display personal score progression on map (TM only)

Command: /scoreprogression

Parameters: None.

Functionality: Display a list with past scores on the current map.

Required permission: None.

82 Chapter 25. Statistics

CHAPTER

TWENTYSIX

ARCHITECTURE & DESIGN

Contents

• Architecture & Design

– Core Architecture

– Apps Architecture

26.1 Core Architecture

The architecture of the core and plugins is described in the sections bellow.

Inspiration.

While developing the Core we did look at how Django is managing their so called Apps. Because these apps are self
contained applications on it’s own, we also call it Apps.

83

PyPlanet Documentation, Release 0.7.0

Note: This image is only describing the most important core components, some components are not shown here.

84 Chapter 26. Architecture & Design

PyPlanet Documentation, Release 0.7.0

26.2 Apps Architecture

More information about the apps itself, please go to Apps Dev Documentation

26.2. Apps Architecture 85

PyPlanet Documentation, Release 0.7.0

86 Chapter 26. Architecture & Design

CHAPTER

TWENTYSEVEN

APP DEVELOPMENT

Contents

• App Development

– Useful references

87

PyPlanet Documentation, Release 0.7.0

27.1 Apps Architecture

88 Chapter 27. App Development

PyPlanet Documentation, Release 0.7.0

27.1. Apps Architecture 89

PyPlanet Documentation, Release 0.7.0

27.2 Life Cycle

90 Chapter 27. App Development

PyPlanet Documentation, Release 0.7.0

Warning: Currently the life cycle isn’t fully implemented. Only the on_init and on_start will be called,
but please prepare your app to support the following life cycle methods.

To support the life cycle in the future, use the self.context.signals instead of the self.instance.
signal_manager

27.2.1 on_init

The on_init() is called the moment after the apps have been ordered at the dependency trees. This means, there is
not yet a stable point to communicate to apps, so it should only initiate local actions, such as clearing variables, initing
related services (like startup of http server).

The on_init() method is a coroutine and will be waited on before starting the other apps init action.

27.2.2 on_start

The on_start() is called at the moment all apps, models and other components are ready and the apps should be
started. In the method you should init the receivers inside of your app, make an active operation that would init remote
connections. For example, you would really like to start showing UI for all players, or initiate local variables based on
other apps or the player manager.

The on_start() method is a coroutine and will be waited on.

27.2.3 on_stop

The on_stop() is called when stopping the app internally (so not when exitting PyPlanet!). Some situations like
game mode switching will make sure that no apps are being active at the moment of playing an incapable game-mode,
game or another app is unloaded that was depending on your app.

PyPlanet will make sure your UI elements are hide from your players, so you don’t have to do this. But remember that
the app could start at any time, meaning that some context would not be valid anymore, and you should take care of
this in the on_start() again.

The on_stop() method is a coroutine and will be waited on.

27.2.4 on_destroy

This method is only called when the app is going to be removed from memory, just before. Mostly only used to save
some data.

The on_destroy() method is a coroutine and will be waited on.

27.3 Create app

You can create an app in different places. For private apps we recommend using the apps folder in your root project
directory.

If you are planning to develop an app for other servers and you want to publish it on PyPi for example, we advise to
create your own module folder in your development project root.

27.3. Create app 91

PyPlanet Documentation, Release 0.7.0

Tip: You can use the CLI tool to generate an API module for you.

pyplanet init_app app_module

27.3.1 1. Create Config

The main entry is the applications config class itself. It is an extended class of the base pyplanet.apps.
AppConfig.

You have to create a file named __init__.py in your app module containing the implementation of the config class.
Example is bellow.

class Admin(AppConfig):
game_dependencies = ['trackmania', 'shootmania']
Game dependencies. We will check if the current game is in the list (or).
Leave undeclared for everything

mode_dependencies = ['TimeAttack']
All the scripted mode file names that are supported by this app.
Leave undeclared for everything

app_dependencies = ['core.maniaplanet']
Dependencies to other apps.
We will make sure that the dependent apps are started first!

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

self.property = 'anything here'

Implement the life cycle method if you need them. Make sure you call the super in
→˓the methods!

27.3.2 2. Create models

In the same App module you can either create a single models file calling models.py or a module models. When
you are using the module method, you need to import all the model files in the models/__init__.py.

Please take a look at the page Define models on how to create model declarations.

27.3.3 3. Add to configuration

Make sure you add your new App to your configuration.

APPS = {
'default': [
'...',
'my_app',
'...',

}

92 Chapter 27. App Development

PyPlanet Documentation, Release 0.7.0

27.3.4 4. Enable debug

Make sure you enable the DEBUG mode during development, this prevents the PyPlanet team from thinking that your
App is giving issues in production environments.

You can enable debug either with using the environment variable PYPLANET_DEBUG or by editing the configuration:

DEBUG = True

27.3.5 5. Start PyPlanet

Your ready to get started. Start PyPlanet!

27.4 Context (UI + Settings)

Every app has some special access to components such as settings and UI. This is needed to be able to unregister the
apps things when it’s unloaded/stopped, such as hiding all manialinks.

You can access this from your app instance like this:

self.context.ui

The way this is implemented will make sure that future updates won’t break your local properties in the app class
itself. For the full contents of this context, take a look at App Context Class.

27.5 Contrib + Core access

Inside of your app you can access the instance and it’s contribution- and core components. To access the instance you
can simply use this code statement:

self.instance

From there you can access most of the controllers components. For the full list of the properties of the instance
class. Look at Instance Class

27.6 Models

Models are defined in either the app/models.py file or the app/models/ folder (with loading from the app/
models/__init__.py)

Models tables are created at the moment PyPlanet starts for the first time as it sees your model, and not yet have a
table. To adjust models you should create migrations.

27.6.1 Define models

You have two base classes where your model class could inherit from, we recommend to use the TimedModel most
of the times. There are a few exceptions where we recommend the base Model, for example glue models. Or very
data-intensive or data where you don’t need to know when it’s created or updated.

27.4. Context (UI + Settings) 93

PyPlanet Documentation, Release 0.7.0

The TimedModel includes these two fields for every model: created_at and updated_at. Those two fields
will be filled and adjusted automatically when saving/updating.

The Model includes no fields and is the very base of the model declaration inherit tree.

For defining fields you can use the asterisk import from peewee to have all Fields available in your file:

from peewee import *

Examples of model declaration:

class Permission(Model):
namespace = CharField(

max_length=255,
null=False,
help_text='Namespace of the permission. Mostly the app.label.'

)

name = CharField(
max_length=255,
null=False,
help_text='Name of permission, in format {app_name|core}:{name}'

)

description = TextField(
null=True, default=None, help_text='Description of permission.'

)

min_level = IntegerField(
default=1, help_text='Minimum required player level to be able to use this

→˓permission.'
)

class Meta:
indexes = (

(('namespace', 'name'), True),
)

For more examples take a look at: pyplanet/apps/core/maniaplanet/models/*.py. You will find the
player and map model here with lots of examples.

For more information about fields please refer to the Peewee documentation: http://peewee.readthedocs.io/en/latest/.

For more information about operations on models, don’t look at the Peewee documentation at first, but look further
in this document.

Fields

Please take a look at: http://peewee.readthedocs.io/en/latest/peewee/models.html#fields

27.6.2 Operations on models

Create new object instance in the database

instance = Model(column='value', second_col=True)
await instance.save()

94 Chapter 27. App Development

http://peewee.readthedocs.io/en/latest/
http://peewee.readthedocs.io/en/latest/peewee/models.html#fields

PyPlanet Documentation, Release 0.7.0

Delete instance from database

await instance.destroy()

Find instance by id or other unique value (search for one instance)

instance = await Model.get(id=1)
instance = await Model.get(login='toffe')

Find instances (query) by executing query with where condition

instances = await Model.execute(Model.select().where(Model.column == 1))

More examples will follow, feel free to ask for help on this topic in the meantime.

Warning: We use a customized version of the Peewee library to have support for async access to database.
Because this reason we had to override some methods or create our own. Please don’t take not that if you get a
sync code exception that it’s not yet supported by PyPlanet async wrapper.

Please contact us on Github if you think you have an issue with the Database Layer. It’s one of the most important
parts of PyPlanet!

27.7 Migrations

Migrations of models are handled with the .migrations module contents. It works quite like Django migrations work,
except it automatically executes the migrations at first boot.

27.7.1 Create migrations

1. To create a migration, go to your app base folder and create a folder (if not yet exist), name the folder
'migrations'.

2. You should create a new python file with the following name pattern:

001_name.py Where 001 is the migration number, this should be unique and the name is a name to represent
to the developer.

3. Past the following snippet and change it like you want.

sample_field = CharField(default='unknown')

def upgrade(migrator: SchemaMigrator):
migrate(

migrator.add_column(TestModel._meta.db_table, 'sample', sample_field)
)

(continues on next page)

27.7. Migrations 95

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

def downgrade(migrator: SchemaMigrator):
pass

4. Change code as you need, but make sure you define defaults or nullable fields, and make sure you use the
db_table from the meta class of the model.

5. Make sure you can upgrade at least. Downgrading is not yet included in the scope, but it’s better to implement
the downgrade as well.

6. Test, make sure it’s able to migrate on at least these engines: MySQL or PostgreSQL.

27.8 Chat Messages

We implemented an abstraction that will provide auto multicall and auto prefixing for you. You can use the following
statements for example:

Send chat message to all players.
await self.instance.chat('Test')

Send chat message to specific player or multiple players.
await self.instance.chat('Test', 'player_login') # Sends to single player.
await self.instance.chat('Test', 'player_login', player_instance) # Sends to both
→˓players.

Execute in chain (Multicall).
await self.instance.chat.execute(

'global_message',
self.instance.chat('Test', 'player_login'),
self.instance.chat('Test2', 'player_login2'),

)

You can combine this with other calls in a GBX multicall:
await self.instance.gbx.multicall(

self.instance.gbx.prepare('SetServerName', 'Test'),
self.instance.chat('Test2', 'player_login2'),

)

27.9 Dedicated/Script methods

From your app you can execute dedicated GBX methods (or scripted methods) with the following methods:

Force player_login into spectator.
await self.instance.gbx('ForceSpectator', 'player_login', 1)

Execute multiple gbx actions in a multicall (Is way faster).
await self.instance.gbx.multicall(

self.instance.gbx('Method', 'arg1', 'arg2'),
self.instance.gbx('Method', 'arg1', 'arg2'),
self.instance.gbx('Method', 'arg1', 'arg2'),

)

96 Chapter 27. App Development

PyPlanet Documentation, Release 0.7.0

27.10 User Interface

You are free to implement any User Interface features in your app yourself. You can use the template engine Jinja2 for
getting values from the Python code inside of your XML that will be displayed to the client.

On this page you will find out how to implement a simple template and maniascript integration. As well as the useful
manialink classes for hiding or showing for specific view styles.

27.10.1 Using templates

To use templates, use the pyplanet.views.template.TemplateView class (click on the class for the API
docs). You can provide the class property template_name which should contain the exact template filename and path.

Example for the example_app:

class SampleView(TemplateView):
template_name = 'example_app/test.xml' # template should be in: ./example_

→˓app/templates/test.xml
Some prefixes that can be used in the template_name:
#
- core.views: ``pyplanet.views.templates``.
- core.pyplanet: ``pyplanet.apps.core.pyplanet.templates``.
- core.maniaplanet: ``pyplanet.apps.core.pyplanet.templates``.
- core.trackmania: ``pyplanet.apps.core.trackmania.templates``.
- core.shootmania: ``pyplanet.apps.core.shootmania.templates``.
- [app_label]: ``[app path]/templates``.

Providing data to the template can be done with several overriden methods in the class itself.

Async Method get_context_data(): Return the global context data here. Make sure you use the super() to retrieve
the current context.

Async Method get_all_player_data(logins): Retrieve the player specific dictionary. Return dict with player as key
and value should contain the data dict.

Async Method get_per_player_data(login): Retrieve the player specific dictionary per player. Return dict with the
data dict for the specific login (player).

Make sure you visit the class documentation for all the methods on the TemplateView: pyplanet.views.
template.TemplateView

Template Content

The actual XML you include with the template_name property is the file that get’s loaded on rendering. The file can
contain anything and can be enriched with the Jinja2 Template Language.

For the Jinja2 documentation we refer to the following page: http://jinja.pocoo.org/docs/2.10/

Example of a XML template with Jinja2 statements:

<frame pos="0 -40" id="sample_frame">
{% if variable == 'value' %}
<label pos="0 0" size="30 5" text="Variable contains value!" textsize="1.2"

→˓valign="top" />
{% else %}
<label pos="0 0" size="30 5" text="Variable does not contain value!" textsize="1.2

→˓" valign="top" />
(continues on next page)

27.10. User Interface 97

http://jinja.pocoo.org/docs/2.10/

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

{% endif %}
</frame>

27.10.2 ManiaScript

Including ManiaScript to your ManiaLink template is pretty simple actually. Even including global libraries provided
by the PyPlanet team is pretty easy. We will explain how you include ManiaScript in your ManiaLink template.

To include ManiaScript in your ManiaLink template, make sure you create a new file besides your ManiaLink template
ending with .Script.Txt and add the following line to your ManiaLink (XML) template:

<script><!-- {% include 'my_app/sample.Script.Txt' %} --></script>

That’s it! Now you can start with writing ManiaScript in the sample.Script.Txt. You can use Jinja2 inside your
ManiaScript to add dynamic content as well.

To include libraries from PyPlanet inside of your ManiaScript, use the following in your .Script.Txt file:

// Includes
{% include 'core.views/libs/TimeUtils.Script.Txt' %}

Warning: Remember, the core script utils can change behaviour at any time!

TimeUtils Lib

The TimeUtils contains several useful utils for working with times. The full path: core.views/libs/
TimeUtils.Script.Txt.

Text LeftPad(Integer number, Integer pad)

This method will make sure the number is left-padded with the number of pads given.

‘Text TimeToText(Integer inTime)‘

This method will format time to text to show local or dedi records for example.

27.10.3 ManiaLink

Useful information about ManiaLink changes or additions made by PyPlanet. ManiaLink docs can be found here:
https://doc.maniaplanet.com/manialink

27.11 Useful references

You might want to look at the following pages as well to get more information:

• Signal Documentation is useful when you are going to hook into Maniaplanet.

• Architecture Overview is useful when you want to know how the core is acting on some points.

Have any questions or bugs to report? Head towards our Support page.

98 Chapter 27. App Development

https://doc.maniaplanet.com/manialink

CHAPTER

TWENTYEIGHT

SIGNALS (CALLBACKS)

Contents

• Signals (callbacks)

28.1 Maniaplanet

28.1.1 Flow

pyplanet.apps.core.maniaplanet.callbacks.flow.loading_map_end = <pyplanet.core.events.callback.Callback object>

Signal Loading Map end.

Code maniaplanet:loading_map_end

Description Callback sent when the server finishes to load the map.

Original Callback Script Maniaplanet.LoadingMap_End

Parameters map (pyplanet.core.maniaplanet.models.map.Map) – Map instance
from database. Updated with the provided data.

pyplanet.apps.core.maniaplanet.callbacks.flow.loading_map_start = <pyplanet.core.events.callback.Callback object>

Signal Loading Map start.

Code maniaplanet:loading_map_start

Description Callback sent when the server starts loading the map.

Original Callback Script Maniaplanet.LoadingMap_Start

Parameters time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.match_end = <pyplanet.core.events.callback.Callback object>

Signal Match End.

Code maniaplanet:match_end

Description Callback sent when the “EndMatch” section start.

Original Callback Script Maniaplanet.EndMatch_Start

Parameters

• count – Each time this section is played, this number is incremented by one.

99

PyPlanet Documentation, Release 0.7.0

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.match_end__end = <pyplanet.core.events.callback.Callback object>

Signal Match End. (End event)

Code maniaplanet:match_end__end

Description Callback sent when the “EndMatch” section ends.

Original Callback Script Maniaplanet.EndMatch_End

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.match_start = <pyplanet.core.events.callback.Callback object>

Signal Match Start.

Code maniaplanet:match_start

Description Callback sent when the “StartMatch” section start.

Original Callback Script Maniaplanet.StartMatch_Start

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.match_start__end = <pyplanet.core.events.callback.Callback object>

Signal Match Start. (End event)

Code maniaplanet:match_start__end

Description Callback sent when the “StartMatch” section end.

Original Callback Script Maniaplanet.StartMatch_End

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.play_loop_end = <pyplanet.core.events.callback.Callback object>

Signal Play Loop End.

Code maniaplanet:play_loop_end

Description Callback sent when the “PlayLoop” section ends.

Original Callback Script Maniaplanet.EndPlayLoop

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.play_loop_start = <pyplanet.core.events.callback.Callback object>

Signal Play Loop Start.

Code maniaplanet:play_loop_start

100 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

Description Callback sent when the “PlayLoop” section starts.

Original Callback Script Maniaplanet.StartPlayLoop

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.podium_end = <pyplanet.core.events.callback.Callback object>

Signal Podium end.

Code maniaplanet:podium_end

Description Callback sent when the podium sequence ends.

Original Callback Script Maniaplanet.Podium_End

Parameters time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.podium_start = <pyplanet.core.events.callback.Callback object>

Signal Podium start.

Code maniaplanet:podium_start

Description Callback sent when the podium sequence starts.

Original Callback Script Maniaplanet.Podium_Start

Parameters time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.round_end = <pyplanet.core.events.callback.Callback object>

Signal Round Start.

Code maniaplanet:round_end

Description Callback sent when the “EndRound” section starts.

Original Callback Script Maniaplanet.EndRound_Start

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.round_end__end = <pyplanet.core.events.callback.Callback object>

Signal Round Start. (End event)

Code maniaplanet:round_end__end

Description Callback sent when the “EndRound” section ends.

Original Callback Script Maniaplanet.EndRound_End

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.round_start = <pyplanet.core.events.callback.Callback object>

Signal Round Start.

Code maniaplanet:round_start

28.1. Maniaplanet 101

PyPlanet Documentation, Release 0.7.0

Description Callback sent when the “StartRound” section starts.

Original Callback Script Maniaplanet.StartRound_Start

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.round_start__end = <pyplanet.core.events.callback.Callback object>

Signal Round Start. (End event)

Code maniaplanet:round_start__end

Description Callback sent when the “StartRound” section ends.

Original Callback Script Maniaplanet.StartRound_End

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.server_end = <pyplanet.core.events.callback.Callback object>

Signal Server End signal

Code maniaplanet:server_end

Description This callback is called when the server script is end. The begin of the event.

Original Callback Script Maniaplanet.EndServer_Start

Parameters

• restarted – Boolean giving information if the script has restarted.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.server_end__end = <pyplanet.core.events.callback.Callback object>

Signal Server End signal (end event)

Code maniaplanet:server_end__end

Description This callback is called when the server script is end. The end of the event.

Original Callback Script Maniaplanet.EndServer_End

Parameters

• restarted – Boolean giving information if the script has restarted.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.server_start = <pyplanet.core.events.callback.Callback object>

Signal Server Start signal

Code maniaplanet:server_start

Description This callback is called when the server script is (re)started. The begin of the event.

Original Callback Script Maniaplanet.StartServer_Start

Parameters

• restarted – Boolean giving information if the script has restarted.

102 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.server_start__end = <pyplanet.core.events.callback.Callback object>

Signal Server Start signal (end of event).

Code maniaplanet:server_start__end

Description This callback is called when the server script is (re)started. The end of the event.

Original Callback Script Maniaplanet.StartServer_End

Parameters

• restarted – Boolean giving information if the script has restarted.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.status_changed = <pyplanet.core.events.callback.Callback object>

Signal Server Status Changed.

Code maniaplanet:status_changed

Description Callback sent when the podium sequence ends.

Original Callback Native Maniaplanet.Podium_End

Parameters

• 1 (int) – Status Code.

• 2 (str) – Status Name.

pyplanet.apps.core.maniaplanet.callbacks.flow.turn_end = <pyplanet.core.events.callback.Callback object>

Signal Turn End.

Code maniaplanet:turn_end

Description Callback sent when the “EndTurn” section starts.

Original Callback Script Maniaplanet.EndTurn_Start

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.turn_end__end = <pyplanet.core.events.callback.Callback object>

Signal Turn End. (End event)

Code maniaplanet:turn_end__end

Description Callback sent when the “EndTurn” section ends.

Original Callback Script Maniaplanet.EndTurn_End

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.turn_start = <pyplanet.core.events.callback.Callback object>

Signal Turn Start.

Code maniaplanet:turn_start

28.1. Maniaplanet 103

PyPlanet Documentation, Release 0.7.0

Description Callback sent when the “StartTurn” section starts.

Original Callback Script Maniaplanet.StartTurn_Start

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.turn_start__end = <pyplanet.core.events.callback.Callback object>

Signal Turn Start. (End event).

Code maniaplanet:turn_start__end

Description Callback sent when the “StartTurn” section ends.

Original Callback Script Maniaplanet.StartTurn_End

Parameters

• count – Each time this section is played, this number is incremented by one.

• time – Server time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.flow.unloading_map_end = <pyplanet.core.events.callback.Callback object>

Signal Unloading of the Map ends.

Code maniaplanet:unloading_map_end

Description Callback sent when the server finishes to unload a map.

Original Callback Script Maniaplanet.UnloadingMap_End

Parameters map (pyplanet.core.maniaplanet.models.map.Map) – Map instance
from database. Updated with the provided data.

pyplanet.apps.core.maniaplanet.callbacks.flow.unloading_map_start = <pyplanet.core.events.callback.Callback object>

Signal Unloading of the Map starts.

Code maniaplanet:unloading_map_start

Description Callback sent when the server starts to unload a map.

Original Callback Script Maniaplanet.UnloadingMap_Start

Parameters map (pyplanet.core.maniaplanet.models.map.Map) – Map instance
from database. Updated with the provided data.

28.1.2 Map

pyplanet.apps.core.maniaplanet.callbacks.map.map_begin = <pyplanet.core.events.callback.Callback object>

Signal Begin of map.

Code maniaplanet:map_begin

Description Callback sent when map begins.

Original Callback Native Maniaplanet.BeginMap

Parameters map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map in-
stance.

pyplanet.apps.core.maniaplanet.callbacks.map.map_end = <pyplanet.core.events.callback.Callback object>

104 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

Signal End of map.

Code maniaplanet:map_end

Description Callback sent when map ends.

Original Callback Native Maniaplanet.EndMap

Parameters map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map in-
stance.

pyplanet.apps.core.maniaplanet.callbacks.map.map_start = <pyplanet.core.events.callback.Callback object>

Signal Begin of map. (Scripted!)

Code maniaplanet:map_begin

Description Callback sent when map starts (same as begin, but scripted).

Original Callback Script Maniaplanet.StartMap_Start

Parameters

• time – Time when callback has been sent.

• count – Counts of the callback that was sent.

• restarted – Is the map restarted.

• map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map instance.

pyplanet.apps.core.maniaplanet.callbacks.map.map_start__end = <pyplanet.core.events.callback.Callback object>

Signal Begin of map, end of event. (Scripted!)

Code maniaplanet:map_start__end

Description Callback sent when map starts (same as begin, but scripted). End of the event

Original Callback Script Maniaplanet.StartMap_End

Parameters

• time – Time when callback has been sent.

• count – Counts of the callback that was sent.

• restarted – Is the map restarted.

• map (pyplanet.apps.core.maniaplanet.models.map.Map) – Map instance.

pyplanet.apps.core.maniaplanet.callbacks.map.playlist_modified = <pyplanet.core.events.callback.Callback object>

Signal Maplist changes.

Code maniaplanet:playlist_modified

Description Callback sent when map list changes.

Original Callback Native Maniaplanet.MapListModified

Parameters

• 1 (int) – Current map index.

• 2 (int) – Next map index.

• 3 (bool) – Is List Modified.

28.1. Maniaplanet 105

PyPlanet Documentation, Release 0.7.0

28.1.3 Player

pyplanet.apps.core.maniaplanet.callbacks.player.player_chat = <pyplanet.core.events.callback.Callback object>

Signal Player has been writing a chat entry. When the server writes something we wont inform it in
here!

Code maniaplanet:player_chat

Description Callback sent when a player chats.

Original Callback Native Maniaplanet.PlayerChat

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• text – Text of chat

• cmd – Boolean if it’s a command. Be aware, you should use the command manager for
commands!

pyplanet.apps.core.maniaplanet.callbacks.player.player_connect = <pyplanet.core.events.callback.Callback object>

Signal Player has been connected.

Code maniaplanet:player_connect

Description Callback sent when a player connects and we fetched our data.

Original Callback Native Maniaplanet.PlayerConnect

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• is_spectator – Boolean determinating if the player joined as spectator.

• source – Raw payload, best to not use!

pyplanet.apps.core.maniaplanet.callbacks.player.player_disconnect = <pyplanet.core.events.callback.Callback object>

Signal Player has been disconnected.

Code maniaplanet:player_disconnect

Description Callback sent when a player disconnects.

Original Callback Native Maniaplanet.PlayerDisconnect

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• reason – Reason of leave

• source – Raw payload, best to not use!

pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_player_slot = <pyplanet.core.events.dispatcher.Signal object>

Signal Player enters a player slot.

Code maniaplanet:player_enter_player_slot

Description Player change into a player, is using a player slot.

106 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

Original Callback None

Parameters player (pyplanet.apps.core.maniaplanet.models.player.
Player) – Player instance.

pyplanet.apps.core.maniaplanet.callbacks.player.player_enter_spectator_slot = <pyplanet.core.events.dispatcher.Signal object>

Signal Player enters a spectator slot (not temporary).

Code maniaplanet:player_enter_spectator_slot

Description Player change into a spectator, is using a spectator slot.

Original Callback None

Parameters player (pyplanet.apps.core.maniaplanet.models.player.
Player) – Player instance.

pyplanet.apps.core.maniaplanet.callbacks.player.player_info_changed = <pyplanet.core.events.callback.Callback object>

Signal Player has changed status.

Code maniaplanet:player_info_changed

Description Callback sent when a player changes from state or information. The callback has been
updated in 0.6.0 to include the information retrieved from extracting the flags parameter.

Original Callback Native Maniaplanet.PlayerInfoChanged

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance (COULD BE NONE SOMETIMES!).

• player_login – Player login string.

• is_spectator – Is player spectator (bool).

• is_temp_spectator – Is player temporary spectator (bool).

• is_pure_spectator – Is player pure spectator (bool).

• auto_target – Player using auto target.

• target_id – The target player id (not login!).

• target (pyplanet.apps.core.maniaplanet.models.player.Player) –
The target player instance or None if not found/none spectating.

• flags – Raw flags.

• spectator_status – Raw spectator status.

• team_id – Team ID of player.

• player_id – Player ID (server id).

• force_spectator (int) – 1, 2 or 3. Force spectator state

• is_referee – Is the player a referee.

• is_podium_ready – Is the player podium ready.

• is_using_stereoscopy – Is the player using stereoscopy

• is_managed_by_other_server – Is the player managed by another server (relaying).

• is_server – Is the player one of the servers.

• has_player_slot – Has the player a reserved player slot.

28.1. Maniaplanet 107

PyPlanet Documentation, Release 0.7.0

• is_broadcasting – Is the player broadcasting (steaming) via the in-game stream func-
tionality.

• has_joined_game – Is the player ready and has it joined the game as player.

28.1.4 User Interface

pyplanet.apps.core.maniaplanet.callbacks.ui.manialink_answer = <pyplanet.core.events.callback.Callback object>

Signal Player has raised an action on the Manialink.

Code maniaplanet:manialink_answer

Description Callback sent when a player clicks on an event of a manialink.

Original Callback Native Maniaplanet.PlayerManialinkPageAnswer

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• action – Action name

• values – Values (in dictionary).

Warning: Don’t use this callback directly, use the abstraction of ‘‘View‘‘ and ‘‘StaticManialink‘‘ to
handle events of your manialink!

28.1.5 Other

pyplanet.apps.core.maniaplanet.callbacks.other.bill_updated = <pyplanet.core.events.callback.Callback object>

Signal Bill has been updated.

Code maniaplanet:bill_updated

Description Callback sent when a bill has been updated.

Original Callback Native Maniaplanet.BillUpdated

Parameters

• 1 (int) – Bill id.

• 2 (int) – State.

• 3 (str) – State name.

• 4 (int) – Transaction id.

pyplanet.apps.core.maniaplanet.callbacks.other.channel_progression_end = <pyplanet.core.events.callback.Callback object>

Signal Signal sent when channel progression sequence ends.

Code maniaplanet:channel_progression_end

Description Callback sent when the channel progression sequence ends.

Original Callback Script Maniaplanet.ChannelProgression_End

Parameters time – Time when callback has been sent.

108 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

pyplanet.apps.core.maniaplanet.callbacks.other.channel_progression_start = <pyplanet.core.events.callback.Callback object>

Signal Signal sent when channel progression sequence starts.

Code maniaplanet:channel_progression_start

Description Callback sent when the channel progression sequence starts.

Original Callback Script Maniaplanet.ChannelProgression_Start

Parameters time – Time when callback has been sent.

pyplanet.apps.core.maniaplanet.callbacks.other.server_chat = <pyplanet.core.events.dispatcher.Signal object>

Signal Server send a chat message.

Code maniaplanet:server_chat

Description Custom signal called when the server outputs a message.

Origin Callback None (via Chat callback).

pyplanet.apps.core.maniaplanet.callbacks.other.vote_updated = <pyplanet.core.events.callback.Callback object>

Signal Vote has been updated.

Code maniaplanet:vote_updated

Description Callback sent when a call vote has been updated.

Original Callback Native Maniaplanet.VoteUpdated

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• state – State name

• cmd_name – Command name

• cmd_param – Parameter given with command.

28.2 Shootmania

28.2.1 Base

Weapons [1-Laser, 2-Rocket, 3-Nucleus, 5-Arrow]

pyplanet.apps.core.shootmania.callbacks.base.action_custom_event = <pyplanet.core.events.callback.Callback object>

Signal Handle Action Custom Event.

Code shootmania:action_custom_event

Description Callback sent when an action triggers a custom event.

Original Callback Script Shootmania.Event.OnActionCustomEvent

Parameters

• time – Time of server when callback is sent.

• shooter (pyplanet.apps.core.maniaplanet.models.player.Player) –
Shooter player instance if any

28.2. Shootmania 109

PyPlanet Documentation, Release 0.7.0

• victim (pyplanet.apps.core.maniaplanet.models.player.Player) –
Victim player instance if any

• actionid – Action Identifier.

• * – Any other params, like param1, param2, etc. . .

pyplanet.apps.core.shootmania.callbacks.base.action_event = <pyplanet.core.events.callback.Callback object>

Signal Handle Action Event.

Code shootmania:action_event

Description Callback sent when an action triggers an event.

Original Callback Script Shootmania.Event.OnActionEvent

Parameters

• time – Time of server when callback is sent.

• login – Player login

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• action_input – Action input.

pyplanet.apps.core.shootmania.callbacks.base.on_armor_empty = <pyplanet.core.events.callback.Callback object>

Signal Armor empty, player eliminated.

Code shootmania:on_armor_empty

Description Callback sent when a player is eliminated.

Original Callback Script Shootmania.Event.OnArmorEmpty

Parameters

• shooter (pyplanet.apps.core.maniaplanet.models.player.Player) –
shooter, Player instance

• time – Time of server when callback is sent.

• weapon – Weapon number.

• victim (pyplanet.apps.core.maniaplanet.models.player.Player) –
victim, Player instance

• distance – Distance between victim and shooter.

• shooter_position – Position of shooter.

• victim_position – Position of victim.

pyplanet.apps.core.shootmania.callbacks.base.on_capture = <pyplanet.core.events.callback.Callback object>

Signal Landmark has been captured

Code shootmania:on_capture

Description Callback sent when a landmark is captured.

Original Callback Script Shootmania.Event.OnCapture

time=source[‘time’], players=players, landmark=source[‘landmark’]

Parameters

110 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

• time – Time of server when callback is sent.

• players (pyplanet.apps.core.maniaplanet.models.player.
Player[]) – Player list (instances).

• landmark – Landmark information, raw!

pyplanet.apps.core.shootmania.callbacks.base.on_command = <pyplanet.core.events.callback.Callback object>

Signal On Command

Code shootmania:on_command

Description Callback sent when a command is executed on the server.

Original Callback Script Shootmania.Event.OnCommand

Parameters

• time – Time of server when callback is sent.

• name – Name of the command

• value (dict) – Value in dictionary of the command.

pyplanet.apps.core.shootmania.callbacks.base.on_default = <pyplanet.core.events.callback.Callback object>

Signal On Default Event

Code shootmania:on_default

Description Callback sent when a old event or default event has been fired.

Original Callback Script Shootmania.Event.Default

Parameters

• time – Time of server when callback is sent.

• type – Name of the command

pyplanet.apps.core.shootmania.callbacks.base.on_fall_damage = <pyplanet.core.events.callback.Callback object>

Signal Fall Damage

Code shootmania:on_fall_damage

Description Callback sent when a player suffers fall damage.

Original Callback Script Shootmania.Event.OnFallDamage

Parameters

• time – Time of server when callback is sent.

• victim (pyplanet.apps.core.maniaplanet.models.player.Player) –
victim, Player instance

pyplanet.apps.core.shootmania.callbacks.base.on_hit = <pyplanet.core.events.callback.Callback object>

Signal Player hit.

Code shootmania:on_hit

Description Callback sent when a player is hit.

Original Callback Script Shootmania.Event.OnHit

Parameters

28.2. Shootmania 111

PyPlanet Documentation, Release 0.7.0

• shooter (pyplanet.apps.core.maniaplanet.models.player.Player) –
shooter, Player instance

• time – Time of server when callback is sent.

• weapon – Weapon number.

• victim (pyplanet.apps.core.maniaplanet.models.player.Player) –
victim, Player instance

• damage – Damage done.

• points – Points scored by hit.

• distance – Distance between victim and shooter.

• shooter_position – Position of shooter.

• victim_position – Position of victim.

pyplanet.apps.core.shootmania.callbacks.base.on_near_miss = <pyplanet.core.events.callback.Callback object>

Signal Near Miss.

Code shootmania:on_near_miss

Description Callback sent when a player dodges a projectile.

Original Callback Script Shootmania.Event.OnNearMiss

Parameters

• shooter (pyplanet.apps.core.maniaplanet.models.player.Player) –
shooter, Player instance

• time – Time of server when callback is sent.

• weapon – Weapon number.

• victim (pyplanet.apps.core.maniaplanet.models.player.Player) –
victim, Player instance

• distance – Distance between victim and shooter.

• shooter_position – Position of shooter.

• victim_position – Position of victim.

pyplanet.apps.core.shootmania.callbacks.base.on_shoot = <pyplanet.core.events.callback.Callback object>

Signal Player shoot.

Code shootmania:on_shoot

Description Callback sent when a player shoots.

Original Callback Script Shootmania.Event.OnShoot

Parameters

• shooter (pyplanet.apps.core.maniaplanet.models.player.Player) –
Shooter, Player instance

• time – Time of server when callback is sent.

• weapon – Weapon number.

pyplanet.apps.core.shootmania.callbacks.base.on_shot_deny = <pyplanet.core.events.callback.Callback object>

Signal Player denies a projectile.

112 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

Code shootmania:on_shot_deny

Description Callback sent when a player denies a projectile.

Original Callback Script Shootmania.Event.OnShotDeny

Parameters

• time – Time of server when callback is sent.

• shooter (pyplanet.apps.core.maniaplanet.models.player.Player) –
shooter, Player instance

• victim (pyplanet.apps.core.maniaplanet.models.player.Player) –
victim, Player instance

• shooter_weapon – Weapon number of shooter.

• victim_weapon – Weapon number of victim that denied the shot.

• distance – Distance between victim and shooter.

• shooter_position – Position of shooter.

• victim_position – Position of victim.

pyplanet.apps.core.shootmania.callbacks.base.player_added = <pyplanet.core.events.callback.Callback object>

Signal On player added.

Code shootmania:player_added

Description Callback sent when a player joins the server.

Original Callback Script Shootmania.Event.OnPlayerAdded

Parameters

• time – Time of server when callback is sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• team – Team nr.

• language – Language code, like ‘en’.

• ladder_rank – Current ladder rank.

• ladder_points – Current ladder points.

pyplanet.apps.core.shootmania.callbacks.base.player_removed = <pyplanet.core.events.callback.Callback object>

Signal On player removed.

Code shootmania:player_removed

Description Callback sent when a player leaves the server.

Original Callback Script Shootmania.Event.OnPlayerRemoved

Parameters

• time – Time of server when callback is sent.

• login – Player login string

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

28.2. Shootmania 113

PyPlanet Documentation, Release 0.7.0

pyplanet.apps.core.shootmania.callbacks.base.player_request_action_change = <pyplanet.core.events.callback.Callback object>

Signal Player requests action change.

Code shootmania:player_request_action_change

Description Callback sent when a player requests to use another action.

Original Callback Script Shootmania.Event.OnPlayerRequestActionChange

Parameters

• time – Time of server when callback is sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• action_change – Can be -1 (request previous action) or 1 (request next action)

pyplanet.apps.core.shootmania.callbacks.base.player_request_respawn = <pyplanet.core.events.callback.Callback object>

Signal On player request respawn.

Code shootmania:player_request_respawn

Description Callback sent when a player presses the respawn button.

Original Callback Script Shootmania.Event.OnPlayerRequestRespawn

Parameters

• time – Time of server when callback is sent.

• login – Player login string

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

pyplanet.apps.core.shootmania.callbacks.base.player_throws_object = <pyplanet.core.events.callback.Callback object>

Signal Player Throws an object.

Code shootmania:player_touch_object

Description Callback sent when a player throws an object.

Original Callback Script Shootmania.Event.OnPlayerThrowsObject

Parameters

• time – Time of server when callback is sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• object_id – Object Identifier.

• model_id – Model identifier.

• model_name – Model name.

pyplanet.apps.core.shootmania.callbacks.base.player_touches_object = <pyplanet.core.events.callback.Callback object>

Signal Player Touches Object.

Code shootmania:player_touches_object

Description Callback sent when a player touches an object.

Original Callback Script Shootmania.Event.OnPlayerTouchesObject

114 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

Parameters

• time – Time of server when callback is sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• object_id – Object Identifier.

• model_id – Model identifier.

• model_name – Model name.

pyplanet.apps.core.shootmania.callbacks.base.player_triggers_sector = <pyplanet.core.events.callback.Callback object>

Signal Player Triggers Sector.

Code shootmania:player_triggers_sector

Description Callback sent when a player triggers a sector.

Original Callback Script Shootmania.Event.OnPlayerTriggersSector

Parameters

• time – Time of server when callback is sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• sector_id – Sector Identifier.

pyplanet.apps.core.shootmania.callbacks.base.scores = <pyplanet.core.events.callback.Callback object>

Signal Score callback, called after the map. (Around the podium time).

Code shootmania:scores

Description Teams and players scores.

Original Callback Script Shootmania.Scores

Parameters

• players (list) – Player score payload. Including player instance etc.

• teams (list) – Team score payload.

• winner_team – The winning team.

• use_teams – Use teams.

• winner_player – The winning player.

• section – Section, current progress of match. Important to check before you save results!!

28.2.2 Elite

Victory Types 1 = time limit reached, 2 = capture, 3 = attacker eliminated, 4 = defenders eliminated.

pyplanet.apps.core.shootmania.callbacks.elite.turn_end = <pyplanet.core.events.callback.Callback object>

Signal Elite turn start.

Code shootmania:elite_turn_end

Description Information about the ending turn.

Original Callback Script Shootmania.Elite.EndTurn

28.2. Shootmania 115

PyPlanet Documentation, Release 0.7.0

Parameters victory_type – Describe how the turn was won. 1 = time limit, 2 = capture, 3 =
attacker eliminated, 4 = defenders eliminated

pyplanet.apps.core.shootmania.callbacks.elite.turn_start = <pyplanet.core.events.callback.Callback object>

Signal Elite turn start.

Code shootmania:elite_turn_start

Description Information about the starting turn.

Original Callback Script Shootmania.Elite.StartTurn

Parameters

• attacker (pyplanet.apps.core.maniaplanet.models.player.Player)
– Player instance of attacker.

• defenders (pyplanet.apps.core.maniaplanet.models.player.
Player[]) – List with player instances of defenders.

28.2.3 Joust

pyplanet.apps.core.shootmania.callbacks.joust.player_reload = <pyplanet.core.events.callback.Callback object>

Signal Player reloads its weapon and capture pole.

Code shootmania:joust_player_reload

Description Callback sent when a player capture a pole to reload its weapons.

Original Callback Script Shootmania.Joust.OnReload

Parameters

• login – Player login.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

pyplanet.apps.core.shootmania.callbacks.joust.results = <pyplanet.core.events.callback.Callback object>

Signal End of round with results of Joust round.

Code shootmania:joust_results

Description Callback sent at the end of the round with the scores of the two players.

Original Callback Script Shootmania.Joust.RoundResult

Parameters players (list) – Player score list, contains player + score.

pyplanet.apps.core.shootmania.callbacks.joust.selected_players = <pyplanet.core.events.callback.Callback object>

Signal Round starts with selected players.

Code shootmania:joust_selected_players

Description Callback sent at the beginning of the round with the logins of the players selected to
play the round.

Original Callback Script Shootmania.Joust.SelectedPlayers

Parameters players (pyplanet.apps.core.maniaplanet.models.player.
Player[]) – Player list (instances).

116 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

28.2.4 Royal

pyplanet.apps.core.shootmania.callbacks.royal.player_score_points = <pyplanet.core.events.callback.Callback object>

Signal Player score points.

Code shootmania:royal_player_score_points

Description Callback sent when a player scores some points.

Original Callback Script Shootmania.Royal.Points

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• type – Type of score, like ‘Pole’, ‘Hit’, or ‘Survival’.

• points – Points that the player gains.

pyplanet.apps.core.shootmania.callbacks.royal.player_spawn = <pyplanet.core.events.callback.Callback object>

Signal Player spawns.

Code shootmania:royal_player_spawn

Description Callback sent when a player is spawned.

Original Callback Script Shootmania.Royal.PlayerSpawn

Parameters player (pyplanet.apps.core.maniaplanet.models.player.
Player) – Player instance.

pyplanet.apps.core.shootmania.callbacks.royal.results = <pyplanet.core.events.callback.Callback object>

Signal End of round with the winner of the Royal round.

Code shootmania:royal_results

Description Callback sent at the end of the round with the player instance of the winner.

Original Callback Script Shootmania.Royal.RoundWinner

Parameters player (pyplanet.apps.core.maniaplanet.models.player.
Player) – Player instance that won the round.

28.3 Trackmania

pyplanet.apps.core.trackmania.callbacks.finish = <pyplanet.core.events.dispatcher.Signal object>

Signal Player finishes a lap or the race.

Code trackmania:finish

Description Player finishes a lap or the complete race. Custom signal!.

Original Callback None

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• race_time (int) – Time in milliseconds of the complete race.

28.3. Trackmania 117

PyPlanet Documentation, Release 0.7.0

• lap_time (int) – Time in milliseconds of the current lap.

• cps – Deprecated!

• lap_cps (list) – Current lap checkpoint times.

• race_cps (list) – Complete race checkpoint times.

• flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow)
– Flow instance.

• is_end_race (bool) – Is this the finish and end of race.

• is_end_lap (bool) – Is this the finish and end of current lap.

• raw – Prevent to use this!

pyplanet.apps.core.trackmania.callbacks.give_up = <pyplanet.core.events.callback.Callback object>

Signal Player gives up.

Code trackmania:give_up

Description Callback sent when a player gives up his current run/round.

Original Callback Script Trackmania.Event.GiveUp

Parameters

• time – Server time when callback has been sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow)
– Flow class instance.

pyplanet.apps.core.trackmania.callbacks.respawn = <pyplanet.core.events.callback.Callback object>

Signal Player respawn at cp.

Code trackmania:respawn

Description Callback sent when a player respawns at the last checkpoint/start.

Original Callback Script Trackmania.Event.Respawn

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow)
– Flow class instance.

• race_cp – Checkpoint times in current race.

• lap_cp – Checkpoint times in current lap.

• race_time – Total race time in milliseconds.

• lap_time – Current lap time in milliseconds.

pyplanet.apps.core.trackmania.callbacks.scores = <pyplanet.core.events.callback.Callback object>

Signal Score callback, called after the map. (Around the podium time).

Code trackmania:scores

Description Teams and players scores.

118 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

Original Callback Script Trackmania.Scores

Parameters

• players (list) – Player score payload. Including player instance etc.

• teams (list) – Team score payload.

• winner_team – The winning team.

• use_teams – Use teams.

• winner_player – The winning player.

• section – Section, current progress of match. Important to check before you save results!!

pyplanet.apps.core.trackmania.callbacks.start_countdown = <pyplanet.core.events.callback.Callback object>

Signal Player starts his round, the countdown starts right now.

Code trackmania:start_countdown

Description Callback sent when a player see the 3,2,1,Go! countdown.

Original Callback Script Trackmania.Event.StartCountdown

Parameters

• time – Server time when callback has been sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow)
– Flow class instance.

pyplanet.apps.core.trackmania.callbacks.start_line = <pyplanet.core.events.callback.Callback object>

Signal Player drives off from the start line.

Code trackmania:start_line

Description Callback sent when a player starts to race (at the end of the 3,2,1,GO! sequence).

Original Callback Script Trackmania.Event.StartLine

Parameters

• time – Server time when callback has been sent.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow)
– Flow class instance.

pyplanet.apps.core.trackmania.callbacks.stunt = <pyplanet.core.events.callback.Callback object>

Signal Player did a stunt.

Code trackmania:stunt

Description Callback sent when a player did a stunt.

Original Callback Script Trackmania.Event.Stunt

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

28.3. Trackmania 119

PyPlanet Documentation, Release 0.7.0

• race_time – Total race time in milliseconds.

• lap_time – Current lap time in milliseconds.

• stunt_score – Current stunt score.

• figure – Figure of stunt.

• angle – Angle of stunt.

• points – Points got by figure.

• combo – Combo counter

• is_straight – Is the jump/stunt straight.

• is_reverse – Is jump/stunt reversed.

• is_master_jump – Is master jump.

• factor – Factor multiplier of points (figure).

pyplanet.apps.core.trackmania.callbacks.warmup_end = <pyplanet.core.events.callback.Callback object>

Signal Warmup Ends

Code trackmania:warmup_end

Description Callback sent when the warmup ends.

Original Callback Script Trackmania.WarmUp.End

pyplanet.apps.core.trackmania.callbacks.warmup_end_round = <pyplanet.core.events.callback.Callback object>

Signal Warmup Round Ends.

Code trackmania:warmup_end_round

Description Callback sent when a warm up round ends.

Original Callback Script Trackmania.WarmUp.EndRound

Parameters

• current – Current round number.

• total – Total warm up rounds.

pyplanet.apps.core.trackmania.callbacks.warmup_start = <pyplanet.core.events.callback.Callback object>

Signal Warmup Starts

Code trackmania:warmup_start

Description Callback sent when the warmup starts.

Original Callback Script Trackmania.WarmUp.Start

pyplanet.apps.core.trackmania.callbacks.warmup_start_round = <pyplanet.core.events.callback.Callback object>

Signal Warmup Round Starts.

Code trackmania:warmup_start_round

Description Callback sent when a warm up round start.

Original Callback Script Trackmania.WarmUp.StartRound

Parameters

• current – Current round number.

120 Chapter 28. Signals (callbacks)

PyPlanet Documentation, Release 0.7.0

• total – Total warm up rounds.

pyplanet.apps.core.trackmania.callbacks.warmup_status = <pyplanet.core.events.callback.Callback object>

Signal Status of Trackmania warmup. (mostly as response).

Code trackmania:warmup_status

Description The status of Trackmania’s the warmup.

Original Callback Script Trackmania.WarmUp.Status

Parameters

• responseid – Internally used. Ignore

• available (bool) – Is warmup available in the game mode. (Boolean).

• active (bool) – Is warmup active and ongoing right now.

pyplanet.apps.core.trackmania.callbacks.waypoint = <pyplanet.core.events.callback.Callback object>

Signal Player crosses a checkpoint.

Code trackmania:waypoint

Description Callback sent when a player crosses a checkpoint.

Original Callback Script Trackmania.Event.WayPoint

player=player, race_time=source[‘racetime’], flow=flow, raw=source

Parameters

• race_time – Total race time in milliseconds.

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance

• flow (pyplanet.apps.core.maniaplanet.models.player.PlayerFlow)
– Flow class instance.

• raw – Raw data, prevent to use this!

Note: This signal is not called when the player finishes or passes finish line during laps map.

28.3. Trackmania 121

PyPlanet Documentation, Release 0.7.0

122 Chapter 28. Signals (callbacks)

CHAPTER

TWENTYNINE

API DOCUMENTATION

Modules:

29.1 pyplanet.apps

class pyplanet.apps.Apps(instance)
The apps class contains the context applications, loaded or not loaded in order of declaration or requirements if
given by app configuration.

The apps should contain a configuration class that could be loaded for reading out metadata, options and other
useful information such as description, author, version and more.

async check()
Check and remove unsupported apps based on the current game and script mode. Also loads unloaded
apps and try if the mode and game does support it again.

async discover()
The discover function will discover all models, signals and more from apps in the right order.

async init()
This method will initiate all apps in order and in series.

populate(apps, in_order=False)
Loads application into the apps registry. Once you populate, the order isn’t yet been decided. After all
imports are done you should shuffle the apps list so it’s in the right order of execution!

Parameters

• apps (list) – Apps list.

• in_order – Is the list already in order?

async start()
This method will start all apps that are previously initiated.

async stop()
This method is executed when the instance is shutting down (will stop all the apps).

class pyplanet.apps.AppConfig(app_name, app_module, instance)
This class is the base class for the Applications metadata class. The class holds information and hooks that will
be executed after initiation for example.

class MyApp(AppConfig):

async def on_start(self):
print('we are staring!!')

123

PyPlanet Documentation, Release 0.7.0

app_dependencies = None
You can provide a list of dependencies to other apps (each entry needs to be a string of the app label!)

game_dependencies = None
You can provide a list of game dependencies that needs to meet when the app is started. For example you
can provide:

game_dependencies = ['trackmania']

You can override this behaviour by defining the following method in your config class

def is_game_supported(self, game):
return game != 'questmania'

human_name = None

static import_app(entry, instance)

is_game_supported(game)

is_mode_supported(mode)

label = None

mode_dependencies = None
You can provide a list of gamemodes that are required to activate the app. Gamemodes needs to be declared
as script names. You can override this behaviour by defining the following method in your config class

def is_mode_supported(self, mode):
return mode.lower().startswith('TimeAttack')

name = None

async on_destroy()
On destroy is being called when unloading the app from the memory.

async on_init()
The on_init will be called before all apps are started (just before the on_ready). This will allow the app
to register things like commands, permissions and other things that are important and don’t require other
apps to be ready.

async on_start()
The on_start call is being called after all apps has been started successfully. You should register any stuff
that is related to any other apps and signals like your self context for signals if they are classmethods.

async on_stop()
The on_stop will be called before stopping the app.

path = None

class pyplanet.apps.config._AppContext(app)
The app context holds instances of core/contrib components that must be managed on a per app base. Such as
the UI registration and distribution.

setting = None
Setting Contrib Component. See Setting Classes.

signals = None
Signal manager. See Signal Manager.

ui = None
UI Component. See UI Classes.

124 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

29.2 pyplanet.views

29.2.1 pyplanet.views

class pyplanet.views.base.View(manager=None, id=None, version=’3’, body=None,
template=None, timeout=0, hide_click=False,
data=None, player_data=None, disable_alt_menu=False,
throw_exceptions=False, relaxed_updating=False)

Base view. The base view will inherit from StaticManiaLink class.

async destroy()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

destroy_sync()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but
will not be executed at the same time. Be aware with this one!

async display(player_logins=None, **kwargs)
Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

Parameters player_logins – Only display to the list of player logins given.

async handle_catch_all(player, action, values, **kwargs)
Override this class to handle all other actions related to this view/manialink.

Parameters

• player – Player instance.

• action – Action name/string

• values – Values provided by the user client.

• kwargs –

–

async hide(player_logins=None)
Hide manialink globally of only for the logins given in parameter.

Parameters player_logins – Only hide for list of players, None for all players on the
server.

async render(player_login=None, data=None, player_data=None, template=None)
Render template. Will render template and return body.

Parameters

• player_login – Render data only for player, set to None to globally render (and ignore
player_data).

• data – Data to append.

• player_data – Data to append.

• template (pyplanet.core.ui.template.Template) – Template instance to
use.

Returns Body, rendered manialink + script.

29.2. pyplanet.views 125

PyPlanet Documentation, Release 0.7.0

subscribe(action, target)
Subscribe to a action given by the manialink.

Parameters

• action – Action name.

• target – Target method.

Returns

class pyplanet.views.template.TemplateView(manager=None, id=None, version=’3’,
body=None, template=None, time-
out=0, hide_click=False, data=None,
player_data=None, disable_alt_menu=False,
throw_exceptions=False, re-
laxed_updating=False)

The TemplateView will provide a view based on a XML template (ManiaLink for example). The view contains
some class properties that are required to work. Those are described bellow.

To use the TemplateView. Initiate it in your own View class, and override one of the following methods:

Method get_context_data() Return the global context data here. Make sure you use the super() to
retrieve the current context.

Method get_all_player_data(logins) Retrieve the player specific dictionary. Return dict with
player as key and value should contain the data dict.

Method get_per_player_data(login) Retrieve the player specific dictionary per player. Return dict
with the data dict for the specific login (player).

Method get_template() Return the template instance from Jinja2. You mostly should not override
this method.

As alternative you can manipulate the instance.data and instance.player_data too.

Properties that are useful to change:

Prop data Global context data. Dict.

Prop player_data Player context data. Dict with player as key.

Prop hide_click Should the manialink disappear after clicking a button/text.

Prop timeout Timeout to hide manialink in seconds.

Example usage:

class AlertView(TemplateView):
template_name = 'my_app/test.xml' # template should be in: ./my_app/

→˓templates/test.xml
Some prefixes that can be used in the template_name:
#
- core.views: ``pyplanet.views.templates``.
- core.pyplanet: ``pyplanet.apps.core.pyplanet.templates``.
- core.maniaplanet: ``pyplanet.apps.core.pyplanet.templates``.
- core.trackmania: ``pyplanet.apps.core.trackmania.templates``.
- core.shootmania: ``pyplanet.apps.core.shootmania.templates``.
- [app_label]: ``[app path]/templates``.

async def get_context_data(self):
context = await super().get_context_data()
context['title'] = 'Sample'
return context

126 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

async destroy()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

destroy_sync()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but
will not be executed at the same time. Be aware with this one!

async display(player_logins=None, **kwargs)
Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

Parameters player_logins – Only display to the list of player logins given.

async get_all_player_data(logins)
Get all player data, should return dictionary with login as key, and dict as value.

Parameters logins – Login list of players. String list.

Returns Dictionary with data.

async get_context_data()
Get global and local context data, used to render template.

async get_per_player_data(login)
Get data for specific player. Will be called for all players that will render the xml for.

Parameters login (str) – Player login string.

Returns Dictionary or None to ignore.

get_player_data()
Get data per player, return dict with login => data dict.

Deprecated since version 0.4.0: Use get_per_player_data() and get_all_player_data()
instead. Will be removed in 0.8.0!

async handle_catch_all(player, action, values, **kwargs)
Override this class to handle all other actions related to this view/manialink.

Parameters

• player – Player instance.

• action – Action name/string

• values – Values provided by the user client.

• kwargs –

–

async hide(player_logins=None)
Hide manialink globally of only for the logins given in parameter.

Parameters player_logins – Only hide for list of players, None for all players on the
server.

async render(*args, player_login=None, **kwargs)
Render template for player. This will only render the body and return it. Not send it!

Parameters player_login – Render data only for player, set to None to globally render (and
ignore player_data).

Returns Body, rendered manialink + script.

29.2. pyplanet.views 127

PyPlanet Documentation, Release 0.7.0

subscribe(action, target)
Subscribe to a action given by the manialink.

Parameters

• action – Action name.

• target – Target method.

Returns

29.2.2 pyplanet.views.generics

class pyplanet.views.generics.alert.AlertView(message, size=’md’, buttons=None, man-
ager=None, target=None, **data)

The AlertView can be used to show several generic alerts to a player. You can use 3 different sizes, and adjust
the message text.

The 3 sizes: sm, md and lg.

__init__(message, size=’md’, buttons=None, manager=None, target=None, **data)
Create an AlertView instance.

Parameters

• message (str) – The message to display to the end-user, Use \n for new lines. You can
use symbols from FontAwesome by using Unicode escaped strings.

• size (str) – Size to use, this parameter should be a string, and one of the following
choices: ‘sm’, ‘md’ or ‘lg. Defaults to ‘md’.

• buttons (list) – Buttons to display, Should be an array with dictionary which contain:
name.

• manager (pyplanet.core.ui._BaseUIManager) – UI Manager to use, You
should always keep this undefined unless you know what your doing!

• target – Target coroutine method called as handle of button clicks.

async close(player, **kwargs)
Close the alert.

async wait_for_reaction()
Wait for reaction or input and return it.

Returns Returns the button clicked or the input value string of the user.

class pyplanet.views.generics.alert.PromptView(message, size=’md’, buttons=None,
manager=None, default=”, valida-
tor=None)

The PromptView is like the AlertView but can ask for a text entry.

The 3 sizes: sm, md and lg.

You can listen for the results of the players input with the wait_for_input() async handler (future). Ex-
ample:

prompt = PromptView('Please enter your name')
await prompt.display(['login'])

user_input = await prompt.wait_for_input()
print(user_input)

128 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

You can do validations before it’s okay with giving a function to the argument validator. Example:

def my_validator(value):
try:

int(value)
return True, None

except:
return False, 'Value should be an integer!'

prompt = PromptView('Please enter your name', validator=my_validator)
await prompt.display(['login'])

user_input = await prompt.wait_for_input()
print(user_input)

__init__(message, size=’md’, buttons=None, manager=None, default=”, validator=None)
Create an AlertView instance.

Parameters

• message (str) – The message to display to the end-user, Use \n for new lines. You can
use symbols from FontAwesome by using Unicode escaped strings.

• size (str) – Size to use, this parameter should be a string, and one of the following
choices: ‘sm’, ‘md’ or ‘lg. Defaults to ‘md’.

• buttons (list) – Buttons to display, Should be an array with dictionary which contain:
name.

• manager (pyplanet.core.ui._BaseUIManager) – UI Manager to use, You
should always keep this undefined unless you know what your doing!

• target – Target coroutine method called as handle of button clicks.

async wait_for_input()
Wait for input and return it.

Returns Returns the string value of the user.

async pyplanet.views.generics.alert.ask_confirmation(player, message, size=’md’,
buttons=None)

Ask the player for confirmation and return the button number (0 is first button).

Parameters

• player – Player login or instance.

• message – Message to display.

• size – Size, could be ‘sm’, ‘md’, or ‘lg’.

• buttons – Buttons, optional, default is yes and no.

Returns Number of button that is clicked.

async pyplanet.views.generics.alert.ask_input(player, message, size=’md’, but-
tons=None, default=None, valida-
tor=None)

Ask the player a question and prompt for input.

Parameters

• player – Player login or instance.

• message – Message to display.

29.2. pyplanet.views 129

PyPlanet Documentation, Release 0.7.0

• size – Size, could be ‘sm’, ‘md’, or ‘lg’

• buttons – Buttons, optional, default is ok.

• default – The default and pre-filled value. Default empty.

• validator – Validator method, default is only checking if the input isn’t empty.

Returns Input given by the user.

async pyplanet.views.generics.alert.show_alert(player, message, size=’md’, but-
tons=None)

Show an alert to the player with given details. This is a shortcut method for the class itself.

Parameters

• player – Player login or instance.

• message – Message in string.

• size – Size, could be ‘sm’, ‘md’, or ‘lg’.

• buttons – Buttons, optional, default is ‘OK’.

Returns Number of the clicked button. (in Future).

class pyplanet.views.generics.list.ListView(*args, **kwargs)
The ListView is an abstract list that uses a database query to show and manipulate the list that is presented to the
end-user. The ListView is able to automatically manage the searching, ordering and pagination of your query
contents.

The columns could be specified, for each column you can change behaviour, such as searchable and sortable.
But also custom rendering of the values that will be displayed.

You can override get_fields(), get_actions(), get_query() if you need any customization or use
a self method or variable in one of your properties.

Note: The design and some behaviour can change in updates of PyPlanet. We aim to provide backward
compatibility as much as we can. If we are going to break things we will make it deprecated, or if we are in a
situation of not having enough time to provide a transition time, we are going to create a separate solution (like
a second version).

class SampleListView(ListView):
query = Model.select()
model = Model
title = 'Select your item'
fields = [

{'name': 'Name', 'index': 'name', 'searching': True, 'sorting':
→˓True},

{'name': 'Author', 'index': 'author', 'searching': True, 'sorting
→˓': True},

]
actions = [

{
'name': 'Delete',
'action': self.action_delete,
'style': 'Icons64x64_1',
'substyle': 'Close'

},
]

(continues on next page)

130 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

async def action_delete(self, player, values, instance, **kwargs):
print('Delete value: {}'.format(instance))

__init__(*args, **kwargs)
Create manialink (USE THE MANAGER CREATE, DONT INIT DIRECTLY!

Parameters

• manager – Manager instance. use your app manager.

• id – Unique manialink id. Could be set later, must be set before displaying.

• version – Version of manialink.

• body – Body of manialink, not including manialink tags!!

• template – Template instance.

• timeout – Timeout to display, hide after the timeout is reached. Seconds.

• hide_click – Hide manialink when click is fired on button.

• data – Data to render. Could also be set later on or controlled separate from this instance.

• player_data – Dict with player login and for value the player specific variables. Dont
fill this to have

a global manialink instead of per person. :param throw_exceptions: Throw exceptions during han-
dling and executing of action handlers. :param relaxed_updating: Relaxed updating will rate limit the
amount of updates send to clients. :type manager: pyplanet.core.ui.AppUIManager :type template: py-
planet.core.ui.template.Template :type id: str :type version: str :type timeout: int

async close(player, *args, **kwargs)
Close the link for a specific player. Will hide manialink and destroy data for player specific to save memory.

Parameters player (pyplanet.apps.core.maniaplanet.models.Player) –
Player model instance.

async display(player=None)
Display list to player.

Parameters player (str, pyplanet.apps.core.maniaplanet.models.
Player) – Player login or model instance.

async get_context_data()
Get global and local context data, used to render template.

async handle_catch_all(player, action, values, **kwargs)
Override this class to handle all other actions related to this view/manialink.

Parameters

• player – Player instance.

• action – Action name/string

• values – Values provided by the user client.

• kwargs –

–

async refresh(player, *args, **kwargs)
Refresh list with current properties for a specific player. Can be used to show new data changes.

29.2. pyplanet.views 131

PyPlanet Documentation, Release 0.7.0

Parameters player (pyplanet.apps.core.maniaplanet.models.Player) –
Player model instance.

single_list = True
Change this to False to have multiple lists open at the same time.

class pyplanet.views.generics.list.ManualListView(data=None, *args, **kwargs)
The ManualListView will act as a ListView, but not based on a model or query.

__init__(data=None, *args, **kwargs)
Create manialink (USE THE MANAGER CREATE, DONT INIT DIRECTLY!

Parameters

• manager – Manager instance. use your app manager.

• id – Unique manialink id. Could be set later, must be set before displaying.

• version – Version of manialink.

• body – Body of manialink, not including manialink tags!!

• template – Template instance.

• timeout – Timeout to display, hide after the timeout is reached. Seconds.

• hide_click – Hide manialink when click is fired on button.

• data – Data to render. Could also be set later on or controlled separate from this instance.

• player_data – Dict with player login and for value the player specific variables. Dont
fill this to have

a global manialink instead of per person. :param throw_exceptions: Throw exceptions during han-
dling and executing of action handlers. :param relaxed_updating: Relaxed updating will rate limit the
amount of updates send to clients. :type manager: pyplanet.core.ui.AppUIManager :type template: py-
planet.core.ui.template.Template :type id: str :type version: str :type timeout: int

async get_data()
Override this method, return a list with dictionaries inside.

29.3 pyplanet.core.exceptions

exception pyplanet.core.exceptions.AppRegistryNotReady
The registry was not yet ready to invoke

exception pyplanet.core.exceptions.ImproperlyConfigured
The configuration is not given or is invalid.

exception pyplanet.core.exceptions.InvalidAppModule
The given app string is invalid or the app itself is misconfigured!

exception pyplanet.core.exceptions.SignalException
Signal receiver thrown an exception!

exception pyplanet.core.exceptions.SignalGlueStop
Throw this exception inside of your glue method to stop executing the signal.

exception pyplanet.core.exceptions.TransportException
The XML-RPC tunnel got a transport error.

132 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

29.4 pyplanet.core.instance

PyPlanet Instance Module

This module holds the main instance class of the PyPlanet system.

pyplanet.core.instance.Controller = <pyplanet.core.controller._Controller object>
Controller access point to prevent circular imports. This is a lazy provided way to get the instance from any-
where! :type Controller: pyplanet.core.Controller :type: pyplanet.core.Controller

class pyplanet.core.instance.Instance(process_name)
Controller Instance. The very base of the controller, containing class instances of all core components.

Variables

• process_name – Process and pool name.

• loop – AsyncIO Event Loop.

• game – Game Information class.

• apps – Apps component.

• gbx – Gbx component.

• db – Database component.

• storage – Storage component.

• signals – Signal Manager (global). Please use the APP context Signal Manager instead!

• ui_manager – UI Manager (global). Please use the APP context UI Manager instead!

• map_manager – Contrib: Map Manager.

• player_manager – Contrib: Player Manager.

• permission_manager – Contrib: Permission Manager.

• command_manager – Contrib: Command Manager.

• setting_manager – Contrib: Setting Manager. Please use the APP context setting
manager instead!

• mode_manager – Contrib. Mode Manager.

property performance_mode
Gives back a boolean, True if we are in performance mode.

Returns Performance mode boolean.

property signal_manager
Deprecated!

Deprecated since version 0.5.0: Use self.context.signals() instead in your apps.

Returns Signal manager (global).

Return type pyplanet.core.events.manager._SignalManager

start(run_forever=True)
Start wrapper.

stop()
Stop all the instance apps and managers.

29.4. pyplanet.core.instance 133

PyPlanet Documentation, Release 0.7.0

29.5 pyplanet.core.ui

class pyplanet.core.ui.template.Template(file)
Template class manages the template file source and the rendering of it.

Will also take care of the loader of the Jinja2 template engine.

Some notable prefixes:

• core.views: pyplanet.views.templates.

• core.pyplanet: pyplanet.apps.core.pyplanet.templates.

• core.maniaplanet: pyplanet.apps.core.pyplanet.templates.

• core.trackmania: pyplanet.apps.core.trackmania.templates.

• core.shootmania: pyplanet.apps.core.shootmania.templates.

• [app_label]: [app path]/templates.

class pyplanet.core.ui.AppUIManager(instance, app)
The App UI manager is here to maintain the context of the app and have it destroy all the listeners when the app
is unloaded.

The UI Properties will be set and hold in the class definition bellow.

class pyplanet.core.ui.ui_properties.UIProperties(instance)
Set the custom Script UI Properties.

Tip: Look at the possible UI Properties right here:

• Trackmania: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#
trackmaniauisetproperties

• Shootmania: https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#
shootmaniauisetproperties

Access this class with:

self.instance.ui_manager.properties

get_attribute(element: str, attribute: str, default=<object object>)
Get an attribute value of an element.

Parameters

• element – Element name

• attribute – Attribute name

• default – Default if not found.

Returns Boolean if it’s set correctly.

get_visibility(element: str, default=<object object>)
Set the visibility of the UI Property and don’t complain about failing to set. Must be set at the start of the
app(s).

Parameters

134 Chapter 29. API Documentation

https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#trackmaniauisetproperties
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#trackmaniauisetproperties
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties

PyPlanet Documentation, Release 0.7.0

• element – Element name, such as notices, map_info and chat. Full list:
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#
shootmaniauisetproperties

• default – The default value, or an exception if not given.

Returns The boolean if it’s visible or raise exception if not exists (or the default if default is
given).

async reset()
Reset the UI Properties to the default ManiaPlanet ones. :return:

set_attribute(element: str, attribute: str, value)
Set an attribute of an element and silent if it’s not found. Useful to change positions but unsure if it will
and still exists. Returns boolean if it’s set successfully.

Parameters

• element – Element name

• attribute – Attribute name

• value – New value of the attribute.

Returns Boolean if it’s set correctly.

set_visibility(element: str, visible: bool)
Set the visibility of the UI Property and don’t complain about failing to set. Must be set at the start of the
app(s).

Parameters

• element – Element name, such as notices, map_info and chat. Full list:
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#
shootmaniauisetproperties

• visible – Boolean if the element should be visible.

Returns Boolean, true if is set, false if failed to set.

class pyplanet.core.ui.components.StaticManiaLink(manager=None, id=None,
version=’3’, body=None,
template=None, time-
out=0, hide_click=False,
data=None, player_data=None,
disable_alt_menu=False,
throw_exceptions=False, re-
laxed_updating=False)

The StaticManiaLink is mostly used in PyPlanet for general views. Please use the View classes instead of this
core ui component!

async destroy()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

destroy_sync()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but
will not be executed at the same time. Be aware with this one!

async display(player_logins=None, **kwargs)
Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

29.5. pyplanet.core.ui 135

https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties
https://github.com/maniaplanet/script-xmlrpc/blob/master/XmlRpcListing.md#shootmaniauisetproperties

PyPlanet Documentation, Release 0.7.0

Parameters player_logins – Only display to the list of player logins given.

async handle_catch_all(player, action, values, **kwargs)
Override this class to handle all other actions related to this view/manialink.

Parameters

• player – Player instance.

• action – Action name/string

• values – Values provided by the user client.

• kwargs –

–

async hide(player_logins=None)
Hide manialink globally of only for the logins given in parameter.

Parameters player_logins – Only hide for list of players, None for all players on the
server.

async render(player_login=None, data=None, player_data=None, template=None)
Render template. Will render template and return body.

Parameters

• player_login – Render data only for player, set to None to globally render (and ignore
player_data).

• data – Data to append.

• player_data – Data to append.

• template (pyplanet.core.ui.template.Template) – Template instance to
use.

Returns Body, rendered manialink + script.

subscribe(action, target)
Subscribe to a action given by the manialink.

Parameters

• action – Action name.

• target – Target method.

Returns

class pyplanet.core.ui.components.DynamicManiaLink(id)
The DynamicManiaLink is a special manialink with data-bindings and automatically updates via maniascript.
Please use the View classes instead!

Warning: This feature is not yet implemented.

async destroy()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

destroy_sync()
Destroy the Manialink with it’s handlers and references. Will also hide the Manialink for all users!

This method is sync and will call a async method (destroying of the manialink at our players) async but
will not be executed at the same time. Be aware with this one!

136 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

async display(player_logins=None, **kwargs)
Display the manialink. Will also render if no body is given. Will show per player or global. depending on
the data given and stored!

Parameters player_logins – Only display to the list of player logins given.

async handle_catch_all(player, action, values, **kwargs)
Override this class to handle all other actions related to this view/manialink.

Parameters

• player – Player instance.

• action – Action name/string

• values – Values provided by the user client.

• kwargs –

–

async hide(player_logins=None)
Hide manialink globally of only for the logins given in parameter.

Parameters player_logins – Only hide for list of players, None for all players on the
server.

async render(player_login=None, data=None, player_data=None, template=None)
Render template. Will render template and return body.

Parameters

• player_login – Render data only for player, set to None to globally render (and ignore
player_data).

• data – Data to append.

• player_data – Data to append.

• template (pyplanet.core.ui.template.Template) – Template instance to
use.

Returns Body, rendered manialink + script.

subscribe(action, target)
Subscribe to a action given by the manialink.

Parameters

• action – Action name.

• target – Target method.

Returns

exception pyplanet.core.ui.exceptions.ManialinkMemoryLeakException
Is thrown when a memory leak is detected in a view. Raised when a manialink responds to a view, but the view
is vanished for the specified player(s).

exception pyplanet.core.ui.exceptions.UIException
Base exception for UI core component.

exception pyplanet.core.ui.exceptions.UIPropertyDoesNotExist
Thrown when UI Property with element doesn’t exist.

class pyplanet.core.ui.loader.PyPlanetLoader
Lazy loader for the pyplanet jinja2 loader.

29.5. pyplanet.core.ui 137

PyPlanet Documentation, Release 0.7.0

29.6 pyplanet.core.storage

exception pyplanet.core.storage.exceptions.StorageException
Base storage exception.

class pyplanet.core.storage.storage.Storage(instance, driver: py-
planet.core.storage.interface.StorageDriver,
config)

The storage component manager is managing the storage access trough drivers that can be customized.

Warning: Some drivers are work in progress!

property driver
Get the raw driver. Be careful with this!

Returns Driver Instance

Return type pyplanet.core.storage.interface.StorageDriver

open(file: str, mode: str = ’rb’, **kwargs)
Open a file on the server. Use relative path to the dedicated root. Use the other open methods to relative
from another base path.

Parameters

• file – Filename/path, relative to the dedicated root path.

• mode – Mode to open, see the python open manual for supported modes.

Returns File handler.

open_map(file: str, mode: str = ’rb’, **kwargs)
Open a file on the server. Relative to the Maps folder (UserData/Maps).

Parameters

• file – Filename/path, relative to the dedicated maps folder.

• mode – Mode to open, see the python open manual for supported modes.

Returns File handler.

open_match_settings(file: str, mode: str = ’r’, **kwargs)
Open a file on the server. Relative to the MatchSettings folder (UserData/Maps/MatchSettings).

Parameters

• file – Filename/path, relative to the dedicated matchsettings folder.

• mode – Mode to open, see the python open manual for supported modes.

Returns File handler.

async remove_map(file: str)
Remove a map file with filename given.

Parameters file – Filename, relative to Maps folder.

138 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

29.6.1 pyplanet.core.storage.drivers

class pyplanet.core.storage.drivers.local.LocalDriver(instance, config: dict =
None)

Local storage driver is using the Python build-in file access utilities for accessing a local storage-like system.

Option BASE_PATH Override the maniaplanet given base path.

class pyplanet.core.storage.drivers.asyncssh.SFTPDriver(instance, config: dict =
None)

SFTP storage driver is using the asyncssh module to access storage that is situated remotely.

Warning: This driver is not ready for production use!!

Option HOST Hostname of destinotion server.

Option PORT Port destinotion server.

Option USERNAME Username of the user account.

Option PASSWORD Password of the user account. (optional if you use public/private keys).

Option KNOWN_HOSTS File to the Known Hosts file.

Option CLIENT_KEYS Array with client private keys.

Option PASSPHRASE Passphrase to unlock private key(s).

Option KWARGS Any other options that will be passed to asyncssh.

connect_sftp()
Get sftp client.

Returns Sftp client.

Return type asyncssh.SFTPClient

29.7 pyplanet.core.events

The events manager contains the class that manages custom and abstract callbacks into the system callbacks. Once a
signals is registered here it could be used by string reference. This makes it easy to have dynamically signals being
created by other apps in a single place so it could be used over all apps.

For example you would create your own custom signal if you have a app for your own created game mode script
that abstracts all the raw XML-RPC events into nice structured and maybe even including fetched data from external
sources.

class pyplanet.core.events.manager._SignalManager
Signal Manager class.

Note: Access this in the app via self.context.signals.

create_app_manager(app)
This method will create the manager instance for the app context.

Parameters app (pyplanet.apps.config.AppConfig) – App instance.

Returns SignalManager instance for the app.

29.7. pyplanet.core.events 139

PyPlanet Documentation, Release 0.7.0

Return type pyplanet.core.events.manager.AppSignalManager

finish_reservations()
The method will copy all reservations to the actual signals. (PRIVATE)

async finish_start(*args, **kwargs)
Finish startup the core, this will copy reservations. (PRIVATE).

get_callback(call_name)
Get signal by XML-RPC (script) callback.

Parameters call_name – Callback name.

Returns Signal class or nothing.

Return type pyplanet.core.events.Signal

get_signal(key)
Get signal by key (namespace:code).

Parameters key – namespace:code key.

Returns signal or none

Return type pyplanet.core.events.Signal

init_app(app)
Initiate app, load all signal/callbacks files. (just import, they should register with decorators).

Parameters app (pyplanet.apps.AppConfig) – App instance

listen(signal, target, conditions=None, **kwargs)
Register a listing client to the signal given (signal instance or string).

Parameters

• signal – Signal instance or string: “namespace:code”

• target – Target method to call.

• conditions – Reserved for future purposes.

register_signal(signal, app=None, callback=False)
Register a signal to be known in the signalling system.

Parameters

• signal – Signal(s)

• app – App context/instance.

• callback – Will a callback handle the response (mostly raw callbacks).

29.7.1 pyplanet.core.events.callback

This file contains a glue between core callbacks and desired callbacks.

class pyplanet.core.events.callback.Callback(call, namespace, code, target=None)
A callback signal is an double signal. Once for the GBX Callback itself (the Gbx callback named). And the
destination Between those two signals is a sort of processor that confirms it into the PyPlanet style objects.

For example, a player connect will result in a player database object instead of the plain Maniaplanet payload.
This will make it possible to develop your app as fast as possible, without any overhead and make it better with
callback payload changes!

140 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

async glue(signal, source, **kwargs)
The glue method converts the source signal (gbx callback) into the pyplanet signal.

async pyplanet.core.events.callback.handle_generic(source, signal, **kwargs)
The handle_generic is a simple handle (processing glue) for just forwarding the payload from the maniaplanet
server into the signal payload.

29.7.2 pyplanet.core.events.dispatcher

This file has been forked from Django and PyDispatcher. The PyDispatcher is licensed under BSD.

class pyplanet.core.events.dispatcher.Signal(code=None, namespace=None, pro-
cess_target=None, use_caching=False)

A signal is a destination tho distribute to where multiple listeners get the message. (event distribution).

class Meta
The meta-class contains the code of the signal, used for string notation. An optional namespace could be
given to override the app label namespace.

Warning: Only change or access this if you override the Signal class in your own class.

has_listeners()
Has the signal listeners.

Returns

async process(**data)
This method processed data into abstract data. You can give your own function in the init of the Signal or
override the method.

Parameters data – Raw data input

Returns Parsed data output

register(receiver, weak=True, dispatch_uid=None)
Connect receiver to sender for signal.

Parameters

• receiver – A function or an instance method which is to receive signals. Receivers must
be hashable objects. If weak is True, then receiver must be weak referenceable.Receivers
must be able to accept keyword arguments. If a receiver is connected with a dispatch_uid
argument, it will not be added if another receiver was already connected with that dis-
patch_uid.

• weak – Whether to use weak references to the receiver. By default, the module will
attempt to use weak references to the receiver objects. If this parameter is false, then
strong references will be used.

• dispatch_uid – An identifier used to uniquely identify a particular instance of a re-
ceiver. This will usually be a string, though it may be anything hashable.

async send(source, raw=False, catch_exceptions=False, gather=True)
Send signal with source. If any receiver raises an error, the error propagates back through send, terminating
the dispatch loop. So it’s possible that all receivers won’t be called if an error is raised.

Parameters

29.7. pyplanet.core.events 141

PyPlanet Documentation, Release 0.7.0

• source – The data to be send to the processor which produces data that will be send to
the receivers.

• raw – Optional bool parameter to just send the source to the receivers without any pro-
cessing.

• catch_exceptions – Catch and return the exceptions.

• gather – Execute multiple receivers at the same time (parallel). On by default!

Returns Return a list of tuple pairs [(receiver, response), . . .].

async send_robust(source=None, raw=False, gather=True)
Send signal from sender to all connected receivers catching errors.

Parameters

• source – The data to be send to the processor which produces data that will be send to
the receivers.

• raw – Optional bool parameter to just send the source to the receivers without any pro-
cessing.

• gather – Execute multiple receivers at the same time (parallel). On by default!

Returns Return a list of tuple pairs [(receiver, response), . . .]. If any receiver raises an er-
ror (specifically any subclass of Exception), return the error instance as the result for that
receiver.

set_self(receiver, slf)
Set the self instance on a receiver.

Deprecated since version 0.0.1.

Parameters

• receiver – Receiver function.

• slf – Self instance

unregister(receiver=None, dispatch_uid=None)
Disconnect receiver from sender for signal. If weak references are used, disconnect need not be called.
The receiver will be removed from dispatch automatically.

Parameters

• receiver – The registered receiver to disconnect. May be none if dispatch_uid is spec-
ified.

• dispatch_uid – the unique identifier of the receiver to disconnect

29.8 pyplanet.god

Error: This package is strictly private and should not be changed inside of one of your apps/customizations!

class pyplanet.god.pool.EnvironmentPool(pool_names, max_restarts=0, options=None)
This class manages the pool instances for the current environment/installation.

142 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

Warning: You should not have to use this class in any moment!

populate()
Populate the pool instance processes, (prepares the processes).

restart(name=None)
Restart single process, or all if no name is given.

Parameters name – Name or none for all pools.

shutdown()
Shutdown all processes.

start()
Start all processes.

watchdog()
Watch all the processes. (Blocking method!).

class pyplanet.god.process.InstanceProcess(queue, environment_name=’default’,
pool=None, options=None)

The InstanceProcess is the encapsulation around the real controller instance.

Warning: This code is still being executed at the main process!!

property did_die
Boolean determinating if the process did die.

property exitcode
Exit code of process.

Returns Exit code.

graceful()
Graceful shutdown the process.

is_alive()
Call process method is_alive()

shutdown()
Shutdown (terminate) process.

start()
Start the process.

property will_restart
Boolean: Is the process able to restart (not reached max_restarts).

29.9 pyplanet.contrib.map

The map contrib will provide map list and information to the apps and core.

class pyplanet.contrib.map.MapManager(instance)
Map Manager. Manages the current map pool and the current and next map.

29.9. pyplanet.contrib.map 143

PyPlanet Documentation, Release 0.7.0

Todo: Write introduction.

Warning: Don’t initiate this class yourself.

async add_map(filename, insert=True, save_matchsettings=True)
Add or insert map to current online playlist.

Parameters

• filename (str) – Load from filename relative to the ‘Maps’ directory on the dedicated
host server.

• insert (bool) – Insert after the current map, this will make it play directly after the
current map. True by default.

• save_matchsettings (bool) – Save match settings as well.

Raise pyplanet.contrib.map.exceptions.MapIncompatible

Raise pyplanet.contrib.map.exceptions.MapException

property current_map
The current map, database model instance.

Return type pyplanet.apps.core.maniaplanet.models.Map

async extend_ta(extend_with=None)
Extend time limit of the current map. Extend with given seconds, or double the original TA timer if None
is given.

Parameters extend_with (int) – Extend with the given seconds, or None for adding the
original TA limit to the current limit(double)

Returns

async get_map(uid=None)
Get map instance by uid.

Parameters uid – By uid (pk).

Returns Player or exception if not found

async get_map_by_index(index)
Get map instance by index id (primary key).

Parameters index – Primary key index.

Returns Map instance or raise exception.

async handle_map_change(info)
This will be called from the glue that creates the signal ‘maniaplanet:map_begin’ or ‘map_end’.

Parameters info – Mapinfo in dict.

Returns Map instance.

Return type pyplanet.apps.core.maniaplanet.models.map.Map

async load_matchsettings(filename)
Load Match Settings file and insert it into the current map playlist.

Parameters filename – File to load, relative to Maps folder.

144 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

Returns Boolean if loaded.

property maps
Get the maps that are currently loaded on the server. The list should contain model instances of the
currently loaded matchsettings. This list should be up-to-date.

Return type list

property next_map
The next scheduled map.

Return type pyplanet.apps.core.maniaplanet.models.Map

playlist_has_map(uid)
Check if our current playlist has a map with the UID given.

Parameters uid – UID String

Returns Boolean, True if it’s in our current playlist (match settings in our session).

property previous_map
The previously played map, or None if not known!

Return type pyplanet.apps.core.maniaplanet.models.Map

async remove_map(map, delete_file=False)
Remove and optionally delete file from server and playlist.

Parameters

• map – Map instance or filename in string.

• delete_file (bool) – Boolean to decide if we are going to remove the file from the
server too. Defaults to False.

Raise pyplanet.contrib.map.exceptions.MapException

Raise pyplanet.core.storage.exceptions.StorageException

async save_matchsettings(filename=None)
Save the current playlist and configuration to the matchsettings file.

Parameters filename (str) – Give the filename of the matchsettings, Leave empty to use
the current loaded and configured one.

Raise pyplanet.contrib.map.exceptions.MapException

Raise pyplanet.core.storage.exceptions.StorageException

async set_current_map(map)
Set the current map and jump to it.

Parameters map – Map instance or uid.

async set_next_map(map)
Set the next map. This will prepare the manager to set the next map and will communicate the next map
to the dedicated server.

The Map parameter can be a map instance or the UID of the map.

Parameters map (pyplanet.apps.core.maniaplanet.models.Map, str) – Map
instance or UID string.

async upload_map(fh, filename, insert=True, overwrite=False)
Upload and add/insert the map to the current online playlist.

Parameters

29.9. pyplanet.contrib.map 145

PyPlanet Documentation, Release 0.7.0

• fh – File handler, bytesio object or any readable context.

• filename (str) – The filename when saving on the server. Must include the map.gbx!
Relative to ‘Maps’ folder.

• insert (bool) – Insert after the current map, this will make it play directly after the
current map. True by default.

• overwrite (bool) – Overwrite current file if exists? Default False.

Raise pyplanet.contrib.map.exceptions.MapIncompatible

Raise pyplanet.contrib.map.exceptions.MapException

Raise pyplanet.core.storage.exceptions.StorageException

exception pyplanet.contrib.map.exceptions.MapException
Generic map exception by manager.

exception pyplanet.contrib.map.exceptions.MapIncompatible
The map you want to add/insert/upload is invalid and not suited for the current server config.

exception pyplanet.contrib.map.exceptions.MapNotFound
Map not found

exception pyplanet.contrib.map.exceptions.ModeIncompatible
The current mode doesn’t support the given action.

29.10 pyplanet.contrib.player

The player contrib will provide player list and information to the apps and core.

class pyplanet.contrib.player.PlayerManager(instance)
Player Manager.

You can access this class in your app with:

self.instance.player_manager

With the manager you can get several useful information about the players on the server. See all the properties
and methods below for more information.

Warning: Don’t initiate this class yourself.

property count_all
Get all player counts (players + spectators).

property count_players
Get number of playing players.

property count_spectators
Get number of spectating players.

async get_player(login=None, pk=None, lock=True)
Get player by login or primary key.

Parameters

• login – Login.

146 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

• pk – Primary Key identifier.

• lock – Lock for a sec when receiving.

Returns Player or exception if not found

Return type pyplanet.apps.core.maniaplanet.models.Player

async get_player_by_id(identifier)
Get player object by ID.

Parameters identifier – Identifier.

Returns Player object or None

async handle_connect(login)
Handle a connection of a player, this call is being called inside of the Glue of the callbacks.

Parameters login – Login, received from dedicated.

Returns Database Player instance.

Return type pyplanet.apps.core.maniaplanet.models.Player

async handle_disconnect(login)
Handle a disconnection of a player, this call is being called inside of the Glue of the callbacks.

Parameters login – Login, received from dedicated.

Returns Database Player instance.

Return type pyplanet.apps.core.maniaplanet.models.Player

async load_blacklist(filename=None)
Load blacklist file.

Parameters filename – File to load or will get from settings.

Raise pyplanet.core.exceptions.ImproperlyConfigured

Raise pyplanet.core.storage.exceptions.StorageException

Returns Boolean if loaded.

async map_loaded(*args, **kwargs)
Reindex the current number of players and spectators.

Parameters

• args –

• kwargs –

Returns

property max_players
Get maximum number of players.

property max_spectators
Get maximum number of spectators.

async on_start()
Handle startup, just before the apps will start. We will throw connects for the players so we know that the
current playing players are also initiated correctly!

property online
Online player list.

29.10. pyplanet.contrib.player 147

PyPlanet Documentation, Release 0.7.0

property online_logins
Online player logins list.

async save_blacklist(filename=None)
Save the current blacklisted players to file given or fetch from config.

Parameters filename (str) – Give the filename of the blacklist, Leave empty to use the
current loaded and configured one.

Raise pyplanet.core.exceptions.ImproperlyConfigured

Raise pyplanet.core.storage.exceptions.StorageException

Exceptions for Map Manager.

exception pyplanet.contrib.player.exceptions.PlayerNotFound
Player not found

29.11 pyplanet.contrib.command

The commands contributed package contains command management and callback logic.

class pyplanet.contrib.command.CommandManager(instance)
The Command Manager contributed extension is a manager that controls all chat-commands in the game. Your
app needs to use this manager to register any custom commands you want to provide.

You should access this class within your app like this:

self.instance.command_manager

You can register your commands like this:

await self.instance.command_manager.register(
Command(command='reboot', target=self.reboot_pool, perms='admin:reboot',

→˓admin=True),
)

More information of the command and the options of it, see the pyplanet.contrib.command.Command
class.

Warning: Don’t initiate this class yourself. Access this class from the self.instance.
command_manager instance.

async execute(player, command, *args)
Execute a command for the given player with the given args.

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player instance.

• command (pyplanet.contrib.command.command.Command) – Command in-
stance.

• args – Args for the command, will be concat into a string with spaces.

Returns

148 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

async register(*commands)
Register your command.

Parameters commands (pyplanet.contrib.command.command.Command) – Com-
mand instance.

class pyplanet.contrib.command.Command(command, target, aliases=None, admin=False,
namespace=None, parser=None, perms=None, de-
scription=None)

The command instance describes the command itself, the target to fire and all other related information, like
admin command or aliases.

Some examples of some commands:

Admin command with permission on it.
Command(command='reboot', target=self.reboot_pool, perms='admin:reboot',
→˓admin=True)

Normal user command with optional argument.
Command(command='list', target=self.show_map_list) .add_
→˓param(name='search', required=False)

add_param(name: str, nargs=1, type=<class ’str’>, default=None, required: bool = True, help: str =
None, dest: str = None)

Add positional parameter.

Parameters

• name – Name of parameter, will be used to store result into!

• nargs – Number of arguments, use integer or ‘*’ for multiple or infinite.

• type – Type of value, keep str to match all types. Use any other to try to parse to the type.

• default – Default value when no value is given.

• required – Set the parameter required state, defaults to true.

• help – Help text to display when parameter is invalid or not given and required.

• dest – Destination to save into namespace result (defaults to name).

Returns parser instance

Return type pyplanet.contrib.command.command.Command

get_params(input)
Get params in array from input in array.

Parameters input (list) – Array of raw input.

Returns Array of parameters, stripped of the command name and namespace, if defined.

Return type list

async handle(instance, player, argv)
Handle command parsing and execution.

Parameters

• player (pyplanet.apps.core.maniaplanet.models.player.Player) –
Player object.

• argv – Arguments in array

29.11. pyplanet.contrib.command 149

PyPlanet Documentation, Release 0.7.0

match(raw)
Try to match the command with the given input in array style (splitted by spaces).

Parameters raw (list) – Raw input, split by spaces.

Returns Boolean if command matches.

property usage_text
The usage text line for the command.

class pyplanet.contrib.command.ParameterParser(prog=None)
Parameter Parser.

Todo: Write introduction + examples.

add_param(name: str, nargs=1, type=<class ’str’>, default=None, required: bool = True, help: str =
None, dest: str = None)

Add positional parameter.

Parameters

• name – Name of parameter, will be used to store result into!

• nargs – Number of arguments, use integer or ‘*’ for multiple or infinite.

• type – Type of value, keep str to match all types. Use any other to try to parse to the type.

• default – Default value when no value is given.

• required – Set the parameter required state, defaults to true.

• help – Help text to display when parameter is invalid or not given and required.

• dest – Destination to save into namespace result (defaults to name).

Returns parser instance

Return type pyplanet.contrib.command.ParameterParser

property errors
Get errors.

Returns array of strings.

Return type list

is_valid()
Is data valid?

Returns boolean

parse(argv)
Parse arguments.

Parameters argv – arguments.

parse_parameter(param, input, position)
Validate and parse param value at input position.

Parameters

• param (dict) – Param dict given.

• input (list) – Full params input (without command or namespace!)

• position (int) – Current seek position.

150 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

Returns value.

exception pyplanet.contrib.command.exceptions.InvalidParamException
Invalid parameter arguments given!

exception pyplanet.contrib.command.exceptions.NotValidated
Your parser hasn’t been called with .parse() before, so no parsing took place!

exception pyplanet.contrib.command.exceptions.ParamException

exception pyplanet.contrib.command.exceptions.ParamParseException

exception pyplanet.contrib.command.exceptions.ParamValidateException

29.12 pyplanet.contrib.permission

The permission contrib will provide permission abilities to players and admin levels.

class pyplanet.contrib.permission.PermissionManager(instance)
Permission Manager manges the permissions of all apps and players.

Todo: Write introduction.

Warning: Don’t initiate this class yourself.

async get_perm(namespace, name)
Get permission by namespace and name.

Parameters

• namespace (str) – Namespace of the permission

• name (str) – Name of the permission.

async has_permission(player, permission)
Check if the player has the right permission.

Parameters

• player – player instance.

• permission – permission name.

Returns boolean if player is allowed.

async on_start()
Handle startup, just before the apps will start. We will make sure we are ready to get requests for permis-
sions.

async register(name, description=”, app=None, min_level=1, namespace=None)
Register a new permission.

Parameters

• name – Name of permission

• description – Description in english.

• app – App instance to retrieve the label.

29.12. pyplanet.contrib.permission 151

PyPlanet Documentation, Release 0.7.0

• min_level – Minimum level required.

• namespace – Namespace, only for core usage!

Returns Permission instance.

29.13 pyplanet.contrib.setting

class pyplanet.contrib.setting.manager.AppSettingManager(instance, app)
The local app setting manager is the one you should use to register settings to inside of your app.

You can use this manager like this:

from pyplanet.contrib.setting import Setting

async def on_start(self):
await self.context.setting.register(

Setting('feature_a', 'Enable feature A', Setting.CAT_FEATURES,
→˓type=bool, description='Enable feature A'),

Setting('feature_b', 'Enable feature B', Setting.CAT_FEATURES,
→˓type=bool, description='Enable feature B'),

)

For more information about the settings, categories, types, and all other options. Look at the Settings
documentation.

Warning: Don’t initiate this class yourself.

async get_all(prefetch_values=True)
Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not rec-
ommended).

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

get_categories()
Get all the categories we have registered. Returns a dict with label as key, and count + name as values.

async get_setting(key, prefetch_values=True)
Get setting by key and optionally fetch the value if not yet fetched.

Parameters

• key – Key string

• prefetch_values – Prefetch the values if not yet fetched?

Returns Setting instance.

Raise SettingException

async register(*settings)
Register your setting(s). This will create default values when the setting has not yet been inited before.

Parameters settings (pyplanet.contrib.setting.setting._Setting) – Set-
ting(s) given.

152 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

class pyplanet.contrib.setting.manager.GlobalSettingManager(instance)
Global Setting manager is available at the instance. instance.setting_manager.

Warning: Don’t use the setting_manager for registering app settings! Use the app setting manager instead!

Don’t initiate this class yourself.

create_app_manager(app_config)
Create app setting manager.

Parameters app_config (pyplanet.apps.config.AppConfig) – App Config in-
stance.

Returns Setting Manager

Return type pyplanet.contrib.setting.manager.AppSettingManager

async get_all(prefetch_values=True)
Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not rec-
ommended).

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

get_app_manager(app)
Get the app manager for a specified app label or config instance.

Parameters app – App label in string or the app config instance.

Returns App manager instance.

Return type pyplanet.contrib.setting.manager.AppSettingManager

async get_apps(prefetch_values=True)
Get all the app label + names for all the settings we can find in our registry. Returns a dict with label as
key, and count + name as values.

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

async get_categories(prefetch_values=True)
Get all the categories we have registered. Returns a dict with label as key, and count + name as values.

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

async get_setting(app_label, key, prefetch_values=True)
Get setting by key and optionally fetch the value if not yet fetched.

Parameters

• app_label – Namespace (mostly app label).

• key – Key string

• prefetch_values – Prefetch the values if not yet fetched?

Returns Setting instance.

Raise SettingException

29.13. pyplanet.contrib.setting 153

PyPlanet Documentation, Release 0.7.0

property recursive_settings
Retrieve all settings, of all submanagers.

The setting contrib contains code for managing and providing settings contexts.

class pyplanet.contrib.setting.Setting(key: str, name: str, category: str, type=<class
’str’>, description: str = None, choices=None, de-
fault=None, change_target=None)

The setting class is for defining a setting for the end-user. This setting can be changed with /settings and
//settings.

With this class you can define or manage your setting that is going to be public for all other apps and end-user.

You can get notified of changes with the change_target in the init of this class. Point this to a method
(async or sync) with the following params: old_value and new_value.

Example:

my_setting = Setting(
'dedimania_code', 'Dedimania Server Code', Setting.CAT_KEYS, type=str,
description='The secret dedimania code. Get one at $lhttp://dedimania.net/

→˓tm2stats/?do=register',
default=None

)

my_other_setting = Setting(
'sample_boolean', 'Booleans for the win!', Setting.CAT_BEHAVIOUR,

→˓type=bool, description='Example',
)

__init__(key: str, name: str, category: str, type=<class ’str’>, description: str = None,
choices=None, default=None, change_target=None)

Create setting with properties.

Parameters

• key – Key of setting, this is mainly only used for the backend and for referencing the
setting. You should keep this unique in your app!

• name – Name of the setting that will be displayed as a small label to the player.

• category – Category from Categories.*. Must be provided!

• type – Type of value to expect, use python types here. str by default.

• description – Description to provide help and instructions to the player.

• choices – List or tuple with choices, only when wanting to restrict values to selected
options.

• default – Default value if not provided from database. This will be returned. Defaults
to None.

• change_target – Target method to call when the setting value has been changed.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

async clear()
Clear the value in the data storage. This will set the value to None, and will return the default value on
request of data.

154 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

Raise NotFound / SerializationException

async get_model()
Get the model for the setting. This will return the model instance or raise an exception when not found.

Returns Model instance

Raise NotFound

async get_value(refresh=False)
Get the value or the default value for the setting model.

Parameters refresh – Force a refresh of the value.

Returns Value in the desired type and unserialized from database/storage.

Raise NotFound / SerializationException

async initiate_setting()
Initiate database record for setting.

serialize_value(value)
Serialize the python value to the data store value, based on the type of the setting.

Parameters value – Python Value.

Returns Database Value

async set_value(value)
Set the value, this will serialize and save the setting to the data storage.

Parameters value – Python value input.

Raise NotFound / SerializationException

property type_name
Get the name of the specified type in string format, suited for displaying to end-user.

Returns User friendly name of type.

unserialize_value(value)
Unserialize the datastorage value to the python value, based on the type of the setting.

Parameters value – Value from database.

Returns Python value.

Raises pyplanet.contrib.setting.exceptions.SerializationException
– SerializationException

class pyplanet.contrib.setting.GlobalSettingManager(instance)
Global Setting manager is available at the instance. instance.setting_manager.

Warning: Don’t use the setting_manager for registering app settings! Use the app setting manager instead!

Don’t initiate this class yourself.

__init__(instance)
Initiate, should only be done from the core instance.

Parameters instance (pyplanet.core.instance.Instance) – Instance.

create_app_manager(app_config)
Create app setting manager.

29.13. pyplanet.contrib.setting 155

PyPlanet Documentation, Release 0.7.0

Parameters app_config (pyplanet.apps.config.AppConfig) – App Config in-
stance.

Returns Setting Manager

Return type pyplanet.contrib.setting.manager.AppSettingManager

async get_all(prefetch_values=True)
Retrieve a list of settings, with prefetched values, so get_value is almost instant (or use ._value, not rec-
ommended).

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

get_app_manager(app)
Get the app manager for a specified app label or config instance.

Parameters app – App label in string or the app config instance.

Returns App manager instance.

Return type pyplanet.contrib.setting.manager.AppSettingManager

async get_apps(prefetch_values=True)
Get all the app label + names for all the settings we can find in our registry. Returns a dict with label as
key, and count + name as values.

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

async get_categories(prefetch_values=True)
Get all the categories we have registered. Returns a dict with label as key, and count + name as values.

Parameters prefetch_values – Prefetch the values in this call. Defaults to True.

Returns List with setting objects.

async get_setting(app_label, key, prefetch_values=True)
Get setting by key and optionally fetch the value if not yet fetched.

Parameters

• app_label – Namespace (mostly app label).

• key – Key string

• prefetch_values – Prefetch the values if not yet fetched?

Returns Setting instance.

Raise SettingException

property recursive_settings
Retrieve all settings, of all submanagers.

Exceptions for Setting Manager.

exception pyplanet.contrib.setting.exceptions.SerializationException
Setting value (un)serialization problems

exception pyplanet.contrib.setting.exceptions.SettingException
Abstract setting exception.

exception pyplanet.contrib.setting.exceptions.TypeUnknownException
The type is unknown.

156 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

29.14 pyplanet.contrib.mode

Mode contrib is managing mode settings and ui settings for the script mode.

class pyplanet.contrib.mode.ModeManager(instance)
Mode Manager manges the script, script settings and the mode UI settings of the current game mode.

Warning: Don’t initiate this class yourself. Use instance.mode_manager for an static instance.

async get_current_full_script(refresh=False)
Get the current full script name.

Parameters refresh – Refresh from server.

async get_current_script(refresh=False)
Get the current script name.

Parameters refresh – Refresh from server.

async get_current_script_info()
Get the script info as a structure containing: Name, CompatibleTypes, Description, Version and the settings
available.

async get_next_full_script(refresh=False)
Get the next full script name.

Parameters refresh – Refresh from server.

async get_next_script(refresh=False)
Get the next script name.

Parameters refresh – Refresh from server.

async get_settings()
Get the current mode settings as a dictionary.

async get_variables()
Get the mode script variables.

async on_start()
Handle startup, just before the apps will start. We will make sure we are ready to get requests for permis-
sions.

async set_next_script(name)
Set the next played script name (after map restart/skip).

Parameters name – Name

async update_next_settings(update_dict)
Queue setting changes for the next script (that will be active after restart).

Parameters update_dict – The dictionary with the partial updated keys and values.

async update_next_variables(update_dict)
Queue variable changes for the next script (that will be active after restart).

Parameters update_dict – The dictionary with the partial updated keys and values.

async update_settings(update_dict)
Update the current settings, merges current settings with the provided settings. Replaces by the keys you
give if the data already exists.

29.14. pyplanet.contrib.mode 157

PyPlanet Documentation, Release 0.7.0

Parameters update_dict – The dictionary with the partial updated keys and values.

async update_variables(update_dict)
Update the current variables, merges current vars with the provided vars. Replaces by the keys you give if
the data already exists.

Parameters update_dict – The dictionary with the partial updated keys and values.

29.14.1 Signals

This file contains the contrib mode signals, related to the current script/mode.

pyplanet.contrib.mode.signals.script_mode_changed = <pyplanet.core.events.dispatcher.Signal object>
Is called after a new script has been loaded and became active!. Reporting two parameters:

Parameters

• unloaded_script – Old script name.

• loaded_script – New and just loaded script.

29.15 pyplanet.contrib.converter

Converter contrib is managing migrating from another controller.

class pyplanet.contrib.converter.base.BaseConverter(instance, db_type, db_host,
db_name, db_user=None,
db_password=None,
db_port=None, prefix=None,
charset=’utf8’)

Base Converter is the abstract converter class.

Please take a look at the other classes bellow.

class pyplanet.contrib.converter.xaseco2.Xaseco2Converter(*args, **kwargs)
The XAseco2 Converter uses MySQL to convert the data to the new PyPlanet structure.

Please take a look at Migrating from other controllers pages for information on how to use this.

class pyplanet.contrib.converter.uaseco.UasecoConverter(*args, **kwargs)
The UAseco Converter uses MySQL to convert the data to the new PyPlanet structure.

Please take a look at Migrating from other controllers pages for information on how to use this.

29.16 pyplanet.contrib.chat

29.16.1 Sending chat messages

We implemented an abstraction that will provide auto multicall and auto prefixing for you. You can use the following
statements for example:

Send chat message to all players.
await self.instance.chat('Test')

Send chat message to specific player or multiple players.

(continues on next page)

158 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

await self.instance.chat('Test', 'player_login') # Sends to single player.
await self.instance.chat('Test', 'player_login', player_instance) # Sends to both
→˓players.

Execute in chain (Multicall).
await self.instance.chat.execute(

'global_message',
self.instance.chat('Test', 'player_login'),
self.instance.chat('Test2', 'player_login2'),

)

You can combine this with other calls in a GBX multicall:
await self.instance.gbx.multicall(

self.instance.gbx.prepare('SetServerName', 'Test'),
self.instance.chat('Test2', 'player_login2'),

)

29.16.2 API Documentation

The chat contrib makes it possible to send chat messages way more easy and faster. It also maintains some other
features related to the chat.

class pyplanet.contrib.chat.ChatManager(instance)
The Chat manager is available with: instance.chat shortcut.

async execute(*queries)
Execute and send one or multiple chat messages (prepared queries or raw strings) with a multicall.

Parameters queries – One or more query instances or one or multiple strings that gets send
as global messages.

Returns The results of the multicall.

prepare(message=None, raw=False)
Prepare a Chat Query by returning a Chat Query object.

Parameters

• message – Messsage predefined or build later.

• raw – Don’t append prefixes or add any automatic message parts.

Returns Query instance

Return type pyplanet.contrib.chat.query.ChatQuery

prepare_raw(message=None)
Prepare raw message query without prefixes!

Parameters message – Predefined message.

Returns Query instance

Return type pyplanet.contrib.chat.query.ChatQuery

29.16. pyplanet.contrib.chat 159

PyPlanet Documentation, Release 0.7.0

29.17 pyplanet.utils

29.17.1 pyplanet.utils.gbxparser

exception pyplanet.utils.gbxparser.GbxException
Exception with parsing the Gbx file.

class pyplanet.utils.gbxparser.GbxParser(file=None, buffer=None)
Async GBX Map Information Parser.

Author: Toffe.

async seek(offset)
We need to override the second param to move from the current position.

Parameters offset (int) – offset to move away.

29.17.2 pyplanet.utils.style

pyplanet.utils.style.STRIP_ALL = {'letters': 'wnoitsgz<>', 'part': '\\$[lh]\\[.+\\]|\\$[lh]|\\$[0-9a-f]{3}'}
Strip all custom maniaplanet styles + formatting.

pyplanet.utils.style.STRIP_CAPITALS = {'letters': 't'}
Strip capital style ($t).

pyplanet.utils.style.STRIP_COLORS = {'letters': 'g', 'part': '\\$[0-9a-f]{3}'}
Strip colors from your input (including $g, color reset).

pyplanet.utils.style.STRIP_LINKS = {'part': '\\$[lh]\\[.+\\]|\\$[lh]'}
Strip links ($h and $l).

pyplanet.utils.style.STRIP_SHADOWS = {'letters': 's'}
Strip shadow style ($s).

pyplanet.utils.style.STRIP_SIZES = {'letters': 'wnoiz'}
Strip all size and adjustments styles ($w $n $o $i $z).

pyplanet.utils.style.style_strip(text, *strip_methods, strip_styling_blocks=True,
keep_reset=False, keep_color_reset=False)

Strip styles from the Maniaplanet universe.

Examples:

print("--- Strip: colours ---")
print(style_strip("ifffMax$06fSmurf$f00.$fffes$$l$09f.$fffm$08f$a5xnw$o",
→˓STRIP_COLORS))
print(style_strip("$l[some link]$i$FFFMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx$l",
→˓STRIP_COLORS))
print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx",
→˓STRIP_COLORS))
print("--- Strip: links ---")
print(style_strip("li$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x$l", STRIP_
→˓LINKS))
print(style_strip("ifffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x", STRIP_
→˓LINKS))
print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffes$$l$09f.$fffm$08fx$l
→˓", STRIP_LINKS))
print(style_strip("$l[some link]$i$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08fx",
→˓STRIP_LINKS))

(continues on next page)

160 Chapter 29. API Documentation

PyPlanet Documentation, Release 0.7.0

(continued from previous page)

print("--- Strip: sizes ---")
print(style_strip("in$fffMax$06fSmurf$f00.$wofffe$$nsl$09f.$w$fffm$08f$a5$ox",
→˓ STRIP_SIZES))
print("--- Strip: everything ---")
print(style_strip("hi$fffMax$06fSmurf$f00.$fffesl$09f.$fffm$08f$a5x$h", STRIP_
→˓ALL))
print(style_strip("$l[some link]$i$fffMax$06fSmur$$f$f00.$fffesl$09f.$fffm$08fx$l
→˓"))
print(style_strip("$l[some link]$i$fffMax$06fSmunrff00.$fffesl$09f.$fffm$08fx"))
Other stuff.:
print(style_strip("$l[some link]$i$fffMax$06fSmunrff00.$fffesl$09f.$fffm$08fx",
→˓STRIP_CAPITALS, STRIP_SHADOWS))

.

Parameters

• text (str) – The input string text.

• strip_methods – Methods for stripping, use one of the STRIP_* constants or leave
undefined to strip everything.

• strip_styling_blocks (bool) – Strip all styling blocks ($> and $<)

• keep_reset (bool) – Keep full resets ($z).

• keep_color_reset (bool) – Keep color resets ($g).

Returns Stripped style string.

Return type str

29.17.3 pyplanet.utils.times

pyplanet.utils.times.format_time(time, hide_hours_when_zero=True,
hide_milliseconds=False)

Format time from integer milliseconds to string format that could be displayed to the end-user.

Parameters

• time (int) – Integer time in milliseconds.

• hide_hours_when_zero (bool) – Hide the hours when there are zero hours.

• hide_milliseconds (bool) – Hide the milliseconds.

Returns String output

Return type str

29.17. pyplanet.utils 161

PyPlanet Documentation, Release 0.7.0

162 Chapter 29. API Documentation

CHAPTER

THIRTY

SUPPORT & CONTACT

If you have any problems with starting PyPlanet, please report it on GitHub: https://github.com/PyPlanet/PyPlanet

If you have any problems that are maybe not that PyPlanet related, please referer to the Maniaplanet Forum: https:
//forum.maniaplanet.com/

30.1 Demo Servers

There are several demo servers available. You need to search for servers on the following logins:

• toffestaging1

• toffestaging2

30.2 Who is behind PyPlanet

Organisation:

• Toffe: Project and organisation lead.

Core:

• Toffe: Lead developer of the PyPlanet project.

Apps:

• Toffe: Bundled Application developer.

• TheM: Bundled Application developer.

Want to help us? Contact Toffe on Discord or Forum: Toffe#8999 or Forum Profile.

163

https://github.com/PyPlanet/PyPlanet
https://forum.maniaplanet.com/
https://forum.maniaplanet.com/
https://forum.maniaplanet.com/memberlist.php?mode=viewprofile&u=20394

PyPlanet Documentation, Release 0.7.0

164 Chapter 30. Support & Contact

CHAPTER

THIRTYONE

DONATE

You can support PyPlanet and other projects of Toffe (such as ManiaCDN and the Toolkit application) with the fol-
lowing donation options:

165

https://patreon.com/pyplanet
https://paypal.me/tomvlk

PyPlanet Documentation, Release 0.7.0

166 Chapter 31. Donate

CHAPTER

THIRTYTWO

PRIVACY

32.1 Error reports

We have an automated error reporting system in place that tells the developers or PyPlanet when there are instabilities
in the core code or in one of the contributed and bundled apps.

What are we catching and reporting

We will catch so called uncaught exceptions, these are mostly not handled by one of the functions inside of the code.
When it’s not handled, the whole function or call to that function is halt and stopped. When this happends, we send an
report with the full traceback (all the touched lines of code in order) with the data of the exception.

We also have some specific messages we forward towards the error reporting service. For this kind of messages it’s
really important we get to know them. For example a memory leak in one of the apps or contributed apps. Or a
captured exception but it’s not known or handled right.

What data are we sending with the report

Depending on the setting we send minimum of full data about your installation and server. By default you will
contribute with the full data option.

Full (level 2 or 3):

• Server dedicated login, paths to maps, scripts, modes, all kind of dedicated configuration.

• Variable data in local method, inside of the exception call.

• Exception with trace or error message including module and line.

• Share information (filtered to only the basic information, no user specific data!!) to app developers (must be
level 3)

Minimum (level 1):

• Exception with basic trace or error message.

Where will the data be stored

All the data will be stored in an analyse and reporting tool that is fully self hosted by Toffe. We protect the installation
with HTTPS and don’t allow unauthorized or non-pyplanet team members to access the data.

What about sensitive information

We will replace any sensitive information that seems to be either a key, serial or password by asterisk. This is done in
the reporting process.

How to change the behaviour of reporting

You can add this line to your base.py file to change the behaviour.

167

PyPlanet Documentation, Release 0.7.0

Error reporting
See documentation for the options, (docs => privacy).
Options:
0 = Don't report any errors or messages.
1 = Report errors with only traces.
2 = Report errors with traces and server data.
3 = Report errors with traces and server data, provide data to contributed apps
→˓(only pyplanet team has access).
LOGGING_REPORTING = 3

Warning: We really like to improve the stability of PyPlanet, therefor we kindly ask you to keep the setting
on, or at least at level 2.

32.2 Analytics & Telemetry

For future improvements and look into the usage of PyPlanet and it’s apps we collect the following information:

• PyPlanet version

• Python version

• Server version

• Operating system

• Server login

• Server titlepack

• Active apps

• Total number of players

We do this by sending so called ping-updates every hour with up-to-date status about the server. By collecting this we
gain information on how to improve with targeting specific titles or apps for updates. And to improve the operating
system support if required.

You can turn this off by adding this line to your settings/base.py:

ANALYTICS = False

168 Chapter 32. Privacy

CHAPTER

THIRTYTHREE

CHANGELOG

33.1 0.7.0 (05 October 2019)

33.1.1 Core

• Breaking: Removed the deprecated app.mapinfo.

• Feature: Keeping track of the MX-id in the database (Database Migration is executed at first startup, no action
required for this).

• Feature: Keep track of the total donations and total playtime of the players. Show it with /topactive and
/topdons.

• Improvement: Upgrade several external libraries.

• Improvement: Support for the latest XMLRPC Scripted version and latest dedicated version. (Min. dedicated is
now set to 2018-02-09_16_00).

• Improvement: Improve the cleanup and initial reset of the UI Properties.

• Improvement: Changed the key to show/hide some widgets from F7 to F8.

• Improvement: Added one missing scripted event handler for Shootmania.

• Improvement: Update the maplist when a change is detected by the server (useful when adding/removing maps
in another tool).

• Security: Update some libraries to fix some security issues (none of which were critical).

• Bugfix: When a map is removed it previously didn’t always got removed from the /list view, this has been fixed.

33.1.2 Apps

• New App: Integrated the Current CPS App from Teemann into the bundled apps (will get a refactor later on).

• Feature: Add MX Info command /mx info.

• Feature: Add command to show/hide the admin toolbar //toolbar.

• Feature: Add a setting to disable/enable juking maps by players.

• Feature: Add voting widget (displaying buttons when a vote is ongoing).

• Feature: Add support for MX MapPacks. //mxpack search and //mxpack add [id].

• Feature: Add a setting to decide how many days a map should be classified as ‘new’ and be included in the
mapfolder ‘new maps’.

169

PyPlanet Documentation, Release 0.7.0

• Feature: Added a warn button to the manage players view (//players).

• Feature: Add a timeout to the chatvotes, the timeout is an adjustable setting. (default 120 seconds).

• Improvement: The dedimania welcome message also contains the limits of the player and server according to
their donation status. (This is a setting and can be turned on, off by default!)

• Improvement: Small improvements in the map karma app related to usability and chat feedback.

33.2 0.6.4 (17 February 2019)

33.2.1 Core

• Improvement: Upgrade several external libraries.

• Improvement: Fix English grammar mistake.

• Security: Make sure that the Yaml files are loaded with the safe method.

• Bugfix: Fixing the integer overflow when extending the time limit too much (for TA modes).

• Bugfix: Make sure to await the coroutine in the royal points callback.

33.2.2 Apps

• Improvement: Make sure the user can use the localcps and dedicps when not having an record (just to view the
checkpoint times).

33.3 0.6.3 (17 November 2018)

33.3.1 Core

• Bugfix: Fixing loading of settings on some setups.

33.4 0.6.2 (17 November 2018)

33.4.1 Core

• Security: Upgraded library to solve security issues (requests library).

• Bugfix: Fixing issues with the command line interface and showing settings error, preventing executing com-
mands outside project

33.4.2 Apps

• Bugfix: Fix issue with clearing the jukebox and locking up the whole jukebox app.

170 Chapter 33. Changelog

PyPlanet Documentation, Release 0.7.0

33.5 0.6.1 (7 October 2018)

33.5.1 Core

• Improvement: Added compatibility with Python 3.7.x.

• Improvement: Upgraded external libraries.

• Improvement: Giant performance improvement when indexing maps, karma and local-records data after writing
maplist and booting for large servers.

• Bugfix: Fixing issue with invalid JSON files (settings). Will show a correct error message.

• Bugfix: Fixing readmaplist.

33.5.2 Apps

• Bugfix: Fix issue in Local Records. Trying to initiate widget before the widget is created in the context.

• Bugfix: Fixing incorrect differences on the live cp times (live rankings) in laps mode.

• Bugfix: Fixing issues with Dedimania in Laps mode.

• Bugfix: Fixing issues with cleaning the Dedimania replays.

• Bugfix: Fixing issue with Dedimania and first driven record (global while it should be only to the person).

• Bugfix: Fixing issue with recording of normal and expanded karma scores in karma app.

33.6 0.6.0 (5 May 2018)

33.6.1 Core

• Breaking: Removed the deprecated app.ui.

• Feature: Add in-game and command line upgrade commands (//upgrade and ./manage.py upgrade) (CAUTION:
Can be unstable!).

• Improvement: Slightly improved the performance when booting PyPlanet on large servers (indexing of local
and karma)

• Improvement: Increased the retry count for connecting to a dedicated server from 5 to 10 retries.

• Improvement: Added bumpversion to project (technical and only for development).

• Improvement: Unpack the flags of the PlayerInfoChange callback and expand the flow variables (techni-
cal).

• Improvement: Updated external libraries.

• Improvement: Extract the zone information for players (technical).

• Improvement: Add nation to join and leave messages.

• Improvement: Activated the shutdown handlers to safely exit PyPlanet. The stop callbacks are now called at
shutdown of PyPlanet.

• Improvement: Show pre-release as update when running on a pre-release version. (We now release pre-releases
for public testing).

33.5. 0.6.1 (7 October 2018) 171

PyPlanet Documentation, Release 0.7.0

• Bugfix: Fix issue when trying to //reboot on Windows.

33.6.2 Apps

• NEW: Add Music Server App: Queue music on your server. Add pyplanet.apps.contrib.music_server to your apps.py.
More information: http://www.pypla.net/en/latest/apps/contrib/music_server.html

• NEW: Add Advertisement App: Show Discord and PayPal logos in-game. Add pyplanet.apps.contrib.ads to your apps.py.
More information: http://www.pypla.net/en/latest/apps/contrib/ads.html

• NEW: Add Queue App: Add a queue for your spectators to fairly join on busy servers. Add pyplanet.apps.contrib.queue to your apps.py.
More information: http://www.pypla.net/en/latest/apps/contrib/queue.html

• Feature: Add settings to change vote ratio for the chat voting app.

• Feature: Add advanced voting (++, +, +-, -, –).

• Feature: Add MX Karma integration. You can configure this in-game with //settings and retrieve a key from:
https://karma.mania-exchange.com/

• Feature: Add Admin Toolbar to manage your server a bit faster. (you can disable this in //settings)

• Feature: Add new vote to extend the time limit on TA modes (better than /replay or /restart, try it!).

• Feature: Add admin command to extend the time limit on TA modes temporary (//extend [time to extend with]
or empty for double the current limit).

• Feature: Add dedimania checkpoint comparison (/dedicps and /dedicps [record number]) to compare your
checkpoint times with the record given (or first when none given).

• Feature: Add local record checkpoint comparison (/localcps and /localcps [record number]) to compare your
checkpoint times with the record given (or first when none given).

• Feature: Add F7 to hide most of the widgets (concentration mode).

• Feature: Add /topsums statistics to see the top local record players.

• Feature: Add buttons to delete local records by an admin.

• Feature: Add checkpoint difference in the middle of the screen when passing checkpoints (in the sector_times
app).

• Feature: Cleanup the dedimania ghost files after reading and sending to dedimania API.

• Feature: Add advanced /list for searching and sorting with your personal local record, the time difference and
karma. (can take long on big servers).

• Improvement: Add caching to the /list view per player and per view.

• Bugfix: Fix issue with incorrect link in the dedimania settings entry.

• Bugfix: Fix the type inconsistency of the dedimania API and driven records

• Bugfix: Fix when trying to vote after restarting the map in the podium sequence.

• Bugfix: Fix the retry logic of Dedimania when losing connection.

33.7 0.5.4

33.7.1 Core

• Improvement: Add unit testing on Windows platform (Technically, using AppVeyor).

172 Chapter 33. Changelog

http://www.pypla.net/en/latest/apps/contrib/music_server.html
http://www.pypla.net/en/latest/apps/contrib/ads.html
http://www.pypla.net/en/latest/apps/contrib/queue.html
https://karma.mania-exchange.com/

PyPlanet Documentation, Release 0.7.0

• Bugfix: Make sure script names with folders are cleaned and stripped from folder names in most cases.

33.7.2 Apps

• Feature: Add button and window to change a folder’s name.

• Improvement: Juke maps that are just added the correct order.

• Improvement: Allow the best CP widget for all modes.

• Improvement: Add blacklist write and read commands, now writes when adding player to blacklist and reads
when PyPlanet starts.

• Bugfix: Fix the scoreprogression command and window.

• Bugfix: Fix issue when map list was saved to disk and all auto-folders where empty afterwards.

• Bugfix: Fix issue where the dedimania records where not reloaded when game mode changed and map has been
restarted.

• Bugfix: Fix message when 2 players rapidly vote and the vote has passed.

33.8 0.5.3

33.8.1 Apps

• Bugfix: Fixing issue with spamming chat vote reminder.

• Bugfix: Fixing admin pass message when forcing pass a vote.

33.9 0.5.2

33.9.1 Core

• Improvement: Disable writing log files by default from 0.5.2.

• Improvement: Move logo and clock down so it doesn’t interfere with the spectator icon.

• Bugfix: Logging on windows should be fixed now.

• Bugfix: Issue with multiple users editting modesettings or PyPlanet settings at the same time.

33.9.2 Apps

• Feature: Add zero karma folder (auto-folder)

• Feature: Added settings to enable or disable specific chat votes.

• Feature: Add //cancelcall (//cancelcallvote) for cancelling a call vote as an admin.

• Feature: Add //pass to pass a chat vote with your admin powers.

• Feature: Add button to add current map to folder on the folder list.

• Improvement: Change chat color of the chat vote lines.

• Improvement: Disable callvotes when chatvotes is turned on (made setting for this as well).

33.8. 0.5.3 173

PyPlanet Documentation, Release 0.7.0

• Bugfix: Only show the folders of the user when adding maps to a folder.

• Bugfix: Fix error when player has not been online and users trying to get the last on date of the player.

• Bugfix: Remove unique index on the folder name so folders can have the same name over all. (auto-migration
made).

• Bugfix: Fix bug that prevented added maps to be auto-juked.

33.10 0.5.1

33.10.1 Core

• Bugfix: Fix for Windows users and import error.

33.11 0.5.0

33.11.1 Core

• Breaking: App context aware signal manager.

This is a deprecation for the property signal_manager of the instance. This means that self.
instance.signal_manager needs to be replaced by self.context.signals to work with the life
cycle changes in 0.8.0. More info: https://github.com/PyPlanet/PyPlanet/issues/392

The old way will break your app from version 0.8.0

• Feature: Add multiple configuration backends. You can now use JSON or YAML as configuration as well. This
is in a beta stage and can still change in upcoming versions. See the documentation for usage.

• Feature: Add logging to file option for starting PyPlanet. You can set this up inside of your settings base.py.
More information can be found in the documentation for configuring PyPlanet.

• Feature: Add detach switch to the PyPlanet starter so it can fork itself to the background and write a PID file.
More information can be found in the documentation for starting PyPlanet.

• Feature: Add player attributes that can be set by apps for caching or maintaining user settings or data during the
session. (Technical)

• Feature: Add migration script for eXpansion database. Look at the manual on http://www.pypla.net/en/stable/
convert/index.html for more information.

• Improvement: Retry 5 times when connecting to the dedicated server, making it possible to start both at the
same time.

• Improvement: Update library versions.

• Improvement: Add minimum required version of the dedicated server to prevent starting PyPlanet for non-
supported dedicated versions.

• Improvement: Only check for stable new versions. Now check for releases instead of tags on Github.

• Improvement: Let the list view skip 10 pages buttons skip to end or begin when less than 10 pages difference.
(Thanks @froznsm)

• Improvement: Add online players login list in the player_manager. (Technical)

• Bugfix: Fixing issue with the release checker.

174 Chapter 33. Changelog

https://github.com/PyPlanet/PyPlanet/issues/392
http://www.pypla.net/en/stable/convert/index.html
http://www.pypla.net/en/stable/convert/index.html

PyPlanet Documentation, Release 0.7.0

• Bugfix: Fixing the link to the upgrade documentation page (Thanks to @thefifthisa).

• Bugfix: Only handle player info change event when this player is still on the server to prevent errors.

• Bugfix: Handle exception when the server initiated a callvote (Thanks to @teemann).

• Bugfix: Correctly handle None column values when searching and/or sorting generic lists.

• Bugfix: Correctly handle non-string column values when searching and/or sorting generic lists.

• Bugfix: Refresh and fixed the player and spectator counters.

33.11.2 Apps

• NEW: Best CPS Widget for Trackmania, shows the best times per checkpoint above the screen. Add the new
app to your apps.py: ‘pyplanet.apps.contrib.best_cps’. More info on the documentation pages of the app. (Big
thanks to @froznsm)

• NEW: Clock Widget, shows the local time of the players computer on the PyPlanet logo. Add the new app to
your apps.py: ‘pyplanet.apps.contrib.clock’. More info on the documentation pages of the app. (Big thanks to
@froznsm)

• NEW: Chat-based Vote App, want to have votes in the chat instead of the callvotes? Enable this app now! Add
the new app to your apps.py: ‘pyplanet.apps.contrib.voting’. More info on the documentation pages of the app.

• Feature: Add folders to the /list interface. There are two types of folders, automatic folders based on facts and
manual per player/admin folders.

• Feature: Add folders for karma related information when karma app is enabled.

• Feature: Add folder for newest maps (added within 14 days).

• Feature: Add spectator status in the /players list.

• Feature: Add /scoreprogression command to see your current score progressions statistics on the current track.

• Feature: Add team switch commands (//forceteam and //switchteam) to the admin app.

• Feature: Add warning command (//warn) and alert to the admin app to warn players.

• Feature: Add the MX link of the current map to the logo left from the map name.

• Feature: Add setting to directly juke after adding map from MX or local (defaults to on).

• Feature: Add //blacklist and //unblacklist to the admin app.

• Improvement: Applied context aware signal manager everywhere.

• Improvement: Moving logic to view in dedimania app.

• Improvement: Adding setting to juke map after //add (mx and local) the map. Enabled by default!

• Improvement: Adding help text to jukebox app command.

• Improvement: Remove workaround for the fixed dedicated issue caused problems with the dedimania app.

• Improvement: Only show login in /list for now as it was causing inconsistency.

• Improvement: Check if the player is online before taking admin actions like kicking the player.

• Improvement: Refactor logic of viewing dedimania records to the desired view class. (Technical)

• Improvement: Further investigate dedimania problems for some specific players. Internal cause is known, exact
reason not yet, we will further investigate this issue.

• Bugfix: Make sure to skip jukeboxed map when it’s deleted from the server.

33.11. 0.5.0 175

PyPlanet Documentation, Release 0.7.0

• Bugfix: Fix the double live rankings entry when changing nickname.

• Bugfix: Check if we have data to compare before calculating CP difference in the live rankings widget.

• Bugfix: Local record widget display fix when player joined during a very specific time that causes it to not
display to the user.

33.12 0.4.5

33.12.1 Core

• Feature: Add ManiaControl convert script. See documentation on converting from old controller for instruc-
tions.

• Improved: Add documentation on how to convert to the right database collation.

33.12.2 Apps

• Bugfix: Fixing issue in the Dymanic Pointlimit app that results in 3 settings having the same key name.

33.13 0.4.4

• Feature: Add UAseco convert script. See documentation on converting from old controller for instructions.

• Improved: Updated libraries and dependencies.

• Bugfix: Catch error when server initiated callvote, thanks to @teemann.

• Bugfix: Fix the release/update checker.

33.14 0.4.3

33.14.1 Apps

• Bugfix: Fix issue with switching to custom script (lower case not found), specially teams mode.

33.15 0.4.2

33.15.1 Core

• Improvement: Bump XML-RPC Script API to version 2.2.0.

• Improvement: Show the Round Score build-in ui (nadeo widget) and move it a bit.

• Improvement: Move the build-in warmup ui (nadeo widget) a bit.

176 Chapter 33. Changelog

PyPlanet Documentation, Release 0.7.0

33.15.2 Apps

• Feature: Add //shuffle and //readmaplist. Both are unsure to work.

• Improvement: Further investigate and report issues related to Dedimania.

• Bugfix: Fixing negative count issue on the info widgets.

• Bugfix: Remove faulty and debug line from dedimania api catch block.

• Bugfix: Properly handle the dedimania response when player is not correct.

• Bugfix: Fixing issues with boolean values and the //modesettings GUI.

33.16 0.4.1

33.16.1 Core

• Improvement: Add command ignore and /version improvements.

• Improvement: Disable the live infos in the left upper corner (player join/leave, 1st finish).

• Bugfix: Issue with database collate and utf8mb4, nickname parsing issue has been solved.

• Bugfix: Don’t auto reload and use different environments for the template engine. Should improve performance
very much.

• Bugfix: Ignore unknown login at the chat and UI managers.

• Bugfix: Ignore key interrupt exception trace when stopping PyPlanet while it has got a reboot in the mean time.

• Bugfix: Hide the ALT menu in shootmania, just as it should do since before 0.4.0.

• Bugfix: Fixing issue with checking for updates could result in a exception trace in the console for some instal-
lations with older setuptools.

• Bugfix: Fixing an issue that results in fetching data for widget several times while it’s not needed (thinking it’s
per player data when it isn’t). (Thanks to Chris92)

33.16.2 Apps

• Improvement: Make it able to drive dedimania records on short maps made by Nadeo.

• Improvement: Make the improvement time blue like Nadeo also does in the sector times widget.

• Improvement: Always show nickname of the map author and make it switchable by clicking on it.

• Bugfix: Don’t set the time of the spectator as your best time in the sector times widget.

• Bugfix: Problems that could lead to dedimania not being init currently on the map if the map was replayed.

• Bugfix: Hide dedimania if map is not supported.

• Bugfix: Fix the offset issue for the live rankings widget (in TA mode).

• Bugfix: Fix the incorrect number of spec/player count on the top left info widget.

33.16. 0.4.1 177

PyPlanet Documentation, Release 0.7.0

33.17 0.4.0

33.17.1 Core

• Breaking: Refactored the TemplateView to make it able to use player data way more efficient.

This is a deprecation for the method get_player_data. From now on, use the get_all_player_data
or the better get_per_player_data. More info: pyplanet.views.

The old method will not be called from 0.7.0

• Feature: UI Overhaul is done! We replaced the whole GUI for a nicer, simple and modern one! With large
inspiration of LongLife’s posted image (https://github.com/PyPlanet/PyPlanet/issues/223).

• Feature: UI Update queue, Don’t make the dedicated hot by sending UI updates in realtime, but queue up and
sent every 0,25 seconds. (Performance)

• Improvement: Removing the fix for symbols in nicknames/chat (fix for the maniaplanet dedicated/client issue
earlier).

• Improvement: Add analytics.

• Improvement: Don’t report several exceptions to Sentry.

• Improvement: Remove SQlite references in code and project skeleton.

• Improvement: Give error message when loaded script is using old style scripted callbacks.

• Improvement: Dynamic future timeouts for script/gbx queries.

• Improvement: Add ManiaScript libs includes in core. Will be expanded, open pull requests if needed!

• Improvement: Adding two new signals for players when entering spec/player slot.

• Bugfix: Adding several investigation points to send more data about problems that occur for some users.

33.17.2 Apps

• Breaking: Refactor the MapInfo app to Info app. Adding new features: Server and general info on top left
corner.

This requires a config change: Change pyplanet.apps.contrib.mapinfo into pyplanet.apps.
contrib.info and you are done!

The old app will be removed in 0.7.0

• Feature: New App: Shootmania Royal Dynamic Point Limit is here! Add it with pyplanet.apps.
contrib.dynamic_points.

• Feature: New App: Trackmania Checkpoint/Sector time widget is here! Add it with pyplanet.apps.
contrib.sector_times.

• Feature: Change modesettings directly from the GUI (//modesettings).

• Improvement: Apply the new UI Overhaul to all apps.

• Improvement: Add message when dedimania records are sent.

• Improvement: Improve the dedimania error handling even better.

• Improvement: Notice when map is not suited for dedimania records.

• Improvement: Several performance improvements on the dedimania and localrecords apps.

178 Chapter 33. Changelog

https://github.com/PyPlanet/PyPlanet/issues/223

PyPlanet Documentation, Release 0.7.0

• Improvement: Add dynamic actions to map list, such as deletion of maps.

• Improvement: Modesettings list is ordered by name by default now.

• Bugfix: Adding several investigation points to send more data about problems that occur for some users.

• Bugfix: Trying to sent dedi records when dedimania isn’t initialized bug is solved.

• Bugfix: Prevent double message of dedimania record when switching game modes.

• Bugfix: Fixing double local records (or investigate more if it still occurs).

33.18 0.3.3

33.18.1 Core

• Bugfix: Ignore errors with unknown login for ui updates. (means the player left).

33.18.2 Apps

• Bugfix: Fixing issues with dedimania and unsupported maps.

• Bugfix: Fixing issues with dedimania and replays.

• Bugfix: Fixing issues with local records widget showing the wrong offset.

• Bugfix: Fixing issues with local records and double records.

• Improvement: Some not visible improvements to the local record widget logic.

33.19 0.3.2

33.19.1 Core

• Bugfix: Not properly sending and handling mode changes.

• Bugfix: Several errors in handling the callbacks in shootmania

33.19.2 Apps

• Bugfix: Fixing issue with removing or erasing maps.

• Improvement: Dedimania now also works in cup mode.

• Feature: Add //replay command for admins, make it able to juke the current map for non-players (ops and
admins)

33.20 0.3.1

33.20.1 Core

• Improvement: Multiple namespaces per command + improve help.

33.18. 0.3.3 179

PyPlanet Documentation, Release 0.7.0

• Improvement: Hide the alt menu in shootmania when having a window in the middle.

• Improvement: Add method to retrieve map by index.

• Bugfix: Save boolean in the //settings

• Bugfix: Fixing issue with writing the map list.

• Bugfix: Handling of fetching player in a callback for shootmania.

• Bugfix: Several fixes for shootmania modes.

33.20.2 Apps

• Improvement: Make dedimania record message shorter.

• Bugfix: Double prefix in leave messages.

• Bugfix: Dedimania nickname fetching gave error. Sometimes the widget didn’t work properly.

• Bugfix: Improve error handling in Dedimania.

• Bugfix: Fixing issue with write map list (admin part of it).

• Bugfix: Don’t display the time of the author when in shootmania

33.21 0.3.0

33.21.1 Core

• Feature: Refactor the app config class so you can define apps in __init__.py and use shorter configuration,
(backward compatible for current contrib apps).

• Feature: Signals runs with gather mode (parallel) now. Makes this way more faster!

• Feature: Add save hook to setting object.

• Feature: Chat contrib component, for shorter syntax at sending and preparing chat messages.

• Feature: Refactor the GBX component, for shorter syntax at sending and preparing Gbx Methods.

• Feature: Make it able to change the UI Properties from the games

• Feature: Add ‘suggestion or bug’ report button.

• Improvement: Unknown command message.

• Improvement: Makes it faster to display local records.

• Improvement: Refactor the local record code.

33.21.2 Apps

• Feature: Add Live Rankings app (beta). Add it to your apps.py!

• Feature: Add chat announce limit in local and dedi records.

• Improvement: Autosave matchsettings on insertion of map.

• Improvement: Hide dedimania widget on downtime.

• Improvement: Better error handling in dedimania app.

180 Chapter 33. Changelog

PyPlanet Documentation, Release 0.7.0

• Bugfix: Fixing issue with displaying WhoKarma list.

• Bugfix: Fixing path issues in MX app.

33.22 0.2.0

33.22.1 Core

• Feature: Improved performance with the all new Performance Mode. This will improve performance for a
player threshold that is freely configurable.

• Feature: Technical: Add option to strip styles/colors from searchable column in listviews.

• Feature: Technical: Add shortcut to get an app setting from global setting manager.

• Improvement: Improve log color for readability.

• Bugfix: Fixing issue with integer or other numeric values and the value 0 in the //settings values.

• Bugfix: Replace invalid UTF-8 from the dedicated response to hotfix (dirty fix) the bug in client with dedicated
communication.

33.22.2 Apps

• Feature: New app: Transactions: Features donations and payments to players as the actual planets stats. Activate
the app now in your apps.py!!

• Feature: Map info shows nickname of author if the author nickname is known.

• Feature: /list [search] directly searching in map list.

• Feature: Implement //modesettings to show and change settings of the current mode script.

• Feature: Restrict karma voting to count after the player finishes the map for X times (optional).

• Feature: Apply the performance mode improvements to the local and dedimania records widgets.

• Feature: Add command to restart PyPlanet pool process. //reboot

• Improvement: Changed dedimania record text chat color.

• Improvement: Changed welcome player nickname default color (white).

• Improvement: Reduced length of record chat messages.

• Improvement: Add player level name to the join/leave messages.

• Bugfix: Jukebox current map gives errors and exceptions.

• Bugfix: Ignore color and style codes inside /list searching.

• Bugfix: Some small improvements on widgets (black window behind local/dedi removed and more transparent)

33.23 0.1.5

33.23.1 Core

• Bugfix: Fixing several issues related to the connection and parsing of the payload.

33.22. 0.2.0 181

PyPlanet Documentation, Release 0.7.0

• Bugfix: Fixing issue with the BeginMatch callback.

• Bugfix: Change issues related to the utf8mb4 unicode collate (max index lengths).

33.23.2 Apps

• Bugfix: Fixing several issues with the dedimania app.

• Bugfix: Fixing issue with local and dedimania records being saved double (2 records for 1 player). (#157).

• Bugfix: Fixing several exception handling in dedimania app.

33.24 0.1.4

33.24.1 Core

• Bugfix: Undo locking, causing freeze.

33.25 0.1.3

33.25.1 Apps

• Bugfix: Fixing issue in dedimania causing crash.

33.26 0.1.2

33.26.1 Core

• Bugfix: Filter out XML parse error of Dedicated Server (#121).

• Bugfix: Give copy of connected players instead of a reference to prevent change of list when looping (#117).

• Bugfix: Fixing issue when player rapidly connects and disconnects, giving error (#126 & #116).

33.26.2 Apps

• Bugfix Karma: Fixing whokarma list not displaying due to error (#122 & #118).

• Bugfix Dedimania: Reconnection issues (#130).

• Improvement Local Records: Improve performance on sending information (chat message) on large servers.
(#139).

• Improvement Dedimania Records: Improve performance on sending information (chat message) on large
servers. (#139).

• Improvement Dedimania Records: Improve the error reporting and implement shorter timeout + retry procedure
(#139).

182 Chapter 33. Changelog

PyPlanet Documentation, Release 0.7.0

33.27 0.1.1

33.27.1 Core

• Fixing issue with creating migrations folder when no permission.

33.28 0.1.0

33.28.1 Core

• Add new fields to the game state class.

• Refresh the game infos every minute.

33.28.2 Contrib Apps

• NEW: Dedimania App: Adding dedimania integration and widget.

33.29 0.0.3

33.29.1 Contrib Apps

• Bugfix Local Records: Widget showing wrong offset of records. (Not showing own record if just in the first part
of >5 recs) (#107).

33.30 0.0.2

33.30.1 Contrib Apps

• Bugfix Local Records: Widget not updating when map changed. Login not found exception. (#106).

33.31 0.0.1

33.31.1 Core

• First implementation of the core.

• First implementation of the CLI tool.

33.27. 0.1.1 183

PyPlanet Documentation, Release 0.7.0

33.31.2 Contrib Apps

Admin pyplanet.apps.contrib.admin

• Feature: Basic map functions: skip / restart / add local / remove / erase / writemaplist

• Feature: Basic player functions: ignore / kick / ban / blacklist

• Feature: Basic server functions: set passwords (play / spectator)

Map list + jukebox pyplanet.apps.contrib.jukebox

• Feature: Display maplist with maps currently on the server

• Feature: Basic jukebox functions: list / drop / add / clear (admin-only)

Map karma pyplanet.apps.contrib.karma

• Feature: Basic map karma (++ / –)

• Feature: Display who voted what (whokarma)

Local records pyplanet.apps.contrib.local_records

• Feature: Saving local records

• Feature: Display current first/personal record on map begin (in chat)

• Feature: Display list of records

Playerlist pyplanet.apps.contrib.players

• Feature: Add join/leave messages.

MX pyplanet.apps.contrib.mx

• Feature: Add MX maps (//add mx [id(s]).

• Feature: Implement MX API Client.

184 Chapter 33. Changelog

CHAPTER

THIRTYFOUR

TODO (DOCS)

Todo: Write introduction + examples.

original entry

Todo: Write introduction.

original entry

Todo: Write introduction.

original entry

185

PyPlanet Documentation, Release 0.7.0

186 Chapter 34. Todo (docs)

CHAPTER

THIRTYFIVE

SOME THOUGHTS FROM EXPERTS

187

PyPlanet Documentation, Release 0.7.0

188 Chapter 35. Some thoughts from experts

CHAPTER

THIRTYSIX

SCREENSHOTS

189

PyPlanet Documentation, Release 0.7.0

190 Chapter 36. Screenshots

CHAPTER

THIRTYSEVEN

INDICES AND TABLES

• genindex

• modindex

• search

191

PyPlanet Documentation, Release 0.7.0

192 Chapter 37. Indices and tables

CHAPTER

THIRTYEIGHT

LINKS

Documentation: http://pypla.net/
GitHub: https://github.com/PyPlanet/PyPlanet
PyPi: https://pypi.python.org/pypi/pyplanet

193

http://pypla.net/
https://github.com/PyPlanet/PyPlanet
https://pypi.python.org/pypi/pyplanet

PyPlanet Documentation, Release 0.7.0

194 Chapter 38. Links

PYTHON MODULE INDEX

p
pyplanet.apps, 123
pyplanet.apps.core.maniaplanet.callbacks.flow,

99
pyplanet.apps.core.maniaplanet.callbacks.map,

104
pyplanet.apps.core.maniaplanet.callbacks.other,

108
pyplanet.apps.core.maniaplanet.callbacks.player,

106
pyplanet.apps.core.maniaplanet.callbacks.ui,

108
pyplanet.apps.core.shootmania.callbacks.base,

109
pyplanet.apps.core.shootmania.callbacks.elite,

115
pyplanet.apps.core.shootmania.callbacks.joust,

116
pyplanet.apps.core.shootmania.callbacks.royal,

117
pyplanet.apps.core.trackmania.callbacks,

117
pyplanet.contrib.chat, 159
pyplanet.contrib.command, 148
pyplanet.contrib.command.exceptions, 151
pyplanet.contrib.converter, 158
pyplanet.contrib.converter.base, 158
pyplanet.contrib.converter.uaseco, 158
pyplanet.contrib.converter.xaseco2, 158
pyplanet.contrib.map, 143
pyplanet.contrib.map.exceptions, 146
pyplanet.contrib.mode, 157
pyplanet.contrib.mode.signals, 158
pyplanet.contrib.permission, 151
pyplanet.contrib.permission.exceptions,

152
pyplanet.contrib.player, 146
pyplanet.contrib.player.exceptions, 148
pyplanet.contrib.setting, 154
pyplanet.contrib.setting.exceptions, 156
pyplanet.contrib.setting.manager, 152
pyplanet.core.events.callback, 140

pyplanet.core.events.dispatcher, 141
pyplanet.core.events.manager, 139
pyplanet.core.exceptions, 132
pyplanet.core.instance, 133
pyplanet.core.storage, 138
pyplanet.core.storage.drivers, 139
pyplanet.core.storage.drivers.asyncssh,

139
pyplanet.core.storage.drivers.local, 139
pyplanet.core.storage.exceptions, 138
pyplanet.core.storage.storage, 138
pyplanet.core.ui, 134
pyplanet.core.ui.components, 135
pyplanet.core.ui.exceptions, 137
pyplanet.core.ui.filters, 137
pyplanet.core.ui.loader, 137
pyplanet.core.ui.template, 134
pyplanet.core.ui.ui_properties, 134
pyplanet.god.pool, 142
pyplanet.god.process, 143
pyplanet.utils.gbxparser, 160
pyplanet.utils.style, 160
pyplanet.utils.times, 161
pyplanet.views.base, 125
pyplanet.views.generics.alert, 128
pyplanet.views.generics.list, 130
pyplanet.views.template, 126

195

PyPlanet Documentation, Release 0.7.0

196 Python Module Index

INDEX

Symbols
_AppContext (class in pyplanet.apps.config), 124
_SignalManager (class in py-

planet.core.events.manager), 139
__init__() (pyplanet.contrib.setting.GlobalSettingManager

method), 155
__init__() (pyplanet.contrib.setting.Setting method),

154
__init__() (pyplanet.views.generics.alert.AlertView

method), 128
__init__() (pyplanet.views.generics.alert.PromptView

method), 129
__init__() (pyplanet.views.generics.list.ListView

method), 131
__init__() (pyplanet.views.generics.list.ManualListView

method), 132
__str__() (pyplanet.contrib.setting.Setting method),

154
__weakref__ (pyplanet.contrib.setting.Setting at-

tribute), 154

A
action_custom_event (in module py-

planet.apps.core.shootmania.callbacks.base),
109

action_event (in module py-
planet.apps.core.shootmania.callbacks.base),
110

add_map() (pyplanet.contrib.map.MapManager
method), 144

add_param() (pyplanet.contrib.command.Command
method), 149

add_param() (pyplanet.contrib.command.ParameterParser
method), 150

AlertView (class in pyplanet.views.generics.alert),
128

app_dependencies (pyplanet.apps.AppConfig
attribute), 123

AppConfig (class in pyplanet.apps), 123
AppRegistryNotReady, 132
Apps (class in pyplanet.apps), 123

AppSettingManager (class in py-
planet.contrib.setting.manager), 152

AppUIManager (class in pyplanet.core.ui), 134
ask_confirmation() (in module py-

planet.views.generics.alert), 129
ask_input() (in module py-

planet.views.generics.alert), 129

B
BaseConverter (class in py-

planet.contrib.converter.base), 158
bill_updated (in module py-

planet.apps.core.maniaplanet.callbacks.other),
108

C
Callback (class in pyplanet.core.events.callback), 140
channel_progression_end (in module py-

planet.apps.core.maniaplanet.callbacks.other),
108

channel_progression_start (in module py-
planet.apps.core.maniaplanet.callbacks.other),
108

ChatManager (class in pyplanet.contrib.chat), 159
check() (pyplanet.apps.Apps method), 123
clear() (pyplanet.contrib.setting.Setting method), 154
close() (pyplanet.views.generics.alert.AlertView

method), 128
close() (pyplanet.views.generics.list.ListView

method), 131
Command (class in pyplanet.contrib.command), 149
CommandManager (class in py-

planet.contrib.command), 148
connect_sftp() (py-

planet.core.storage.drivers.asyncssh.SFTPDriver
method), 139

Controller (in module pyplanet.core.instance), 133
count_all() (pyplanet.contrib.player.PlayerManager

property), 146
count_players() (py-

planet.contrib.player.PlayerManager prop-
erty), 146

197

PyPlanet Documentation, Release 0.7.0

count_spectators() (py-
planet.contrib.player.PlayerManager prop-
erty), 146

create_app_manager() (py-
planet.contrib.setting.GlobalSettingManager
method), 155

create_app_manager() (py-
planet.contrib.setting.manager.GlobalSettingManager
method), 153

create_app_manager() (py-
planet.core.events.manager._SignalManager
method), 139

current_map() (pyplanet.contrib.map.MapManager
property), 144

D
destroy() (pyplanet.core.ui.components.DynamicManiaLink

method), 136
destroy() (pyplanet.core.ui.components.StaticManiaLink

method), 135
destroy() (pyplanet.views.base.View method), 125
destroy() (pyplanet.views.template.TemplateView

method), 126
destroy_sync() (py-

planet.core.ui.components.DynamicManiaLink
method), 136

destroy_sync() (py-
planet.core.ui.components.StaticManiaLink
method), 135

destroy_sync() (pyplanet.views.base.View method),
125

destroy_sync() (py-
planet.views.template.TemplateView method),
127

did_die() (pyplanet.god.process.InstanceProcess
property), 143

discover() (pyplanet.apps.Apps method), 123
display() (pyplanet.core.ui.components.DynamicManiaLink

method), 136
display() (pyplanet.core.ui.components.StaticManiaLink

method), 135
display() (pyplanet.views.base.View method), 125
display() (pyplanet.views.generics.list.ListView

method), 131
display() (pyplanet.views.template.TemplateView

method), 127
driver() (pyplanet.core.storage.storage.Storage prop-

erty), 138
DynamicManiaLink (class in py-

planet.core.ui.components), 136

E
EnvironmentPool (class in pyplanet.god.pool), 142

errors() (pyplanet.contrib.command.ParameterParser
property), 150

execute() (pyplanet.contrib.chat.ChatManager
method), 159

execute() (pyplanet.contrib.command.CommandManager
method), 148

exitcode() (pyplanet.god.process.InstanceProcess
property), 143

extend_ta() (pyplanet.contrib.map.MapManager
method), 144

F
finish (in module py-

planet.apps.core.trackmania.callbacks), 117
finish_reservations() (py-

planet.core.events.manager._SignalManager
method), 140

finish_start() (py-
planet.core.events.manager._SignalManager
method), 140

format_time() (in module pyplanet.utils.times), 161

G
game_dependencies (pyplanet.apps.AppConfig at-

tribute), 124
GbxException, 160
GbxParser (class in pyplanet.utils.gbxparser), 160
get_all() (pyplanet.contrib.setting.GlobalSettingManager

method), 156
get_all() (pyplanet.contrib.setting.manager.AppSettingManager

method), 152
get_all() (pyplanet.contrib.setting.manager.GlobalSettingManager

method), 153
get_all_player_data() (py-

planet.views.template.TemplateView method),
127

get_app_manager() (py-
planet.contrib.setting.GlobalSettingManager
method), 156

get_app_manager() (py-
planet.contrib.setting.manager.GlobalSettingManager
method), 153

get_apps() (pyplanet.contrib.setting.GlobalSettingManager
method), 156

get_apps() (pyplanet.contrib.setting.manager.GlobalSettingManager
method), 153

get_attribute() (py-
planet.core.ui.ui_properties.UIProperties
method), 134

get_callback() (py-
planet.core.events.manager._SignalManager
method), 140

get_categories() (py-
planet.contrib.setting.GlobalSettingManager

198 Index

PyPlanet Documentation, Release 0.7.0

method), 156
get_categories() (py-

planet.contrib.setting.manager.AppSettingManager
method), 152

get_categories() (py-
planet.contrib.setting.manager.GlobalSettingManager
method), 153

get_context_data() (py-
planet.views.generics.list.ListView method),
131

get_context_data() (py-
planet.views.template.TemplateView method),
127

get_current_full_script() (py-
planet.contrib.mode.ModeManager method),
157

get_current_script() (py-
planet.contrib.mode.ModeManager method),
157

get_current_script_info() (py-
planet.contrib.mode.ModeManager method),
157

get_data() (pyplanet.views.generics.list.ManualListView
method), 132

get_map() (pyplanet.contrib.map.MapManager
method), 144

get_map_by_index() (py-
planet.contrib.map.MapManager method),
144

get_model() (pyplanet.contrib.setting.Setting
method), 155

get_next_full_script() (py-
planet.contrib.mode.ModeManager method),
157

get_next_script() (py-
planet.contrib.mode.ModeManager method),
157

get_params() (pyplanet.contrib.command.Command
method), 149

get_per_player_data() (py-
planet.views.template.TemplateView method),
127

get_perm() (pyplanet.contrib.permission.PermissionManager
method), 151

get_player() (pyplanet.contrib.player.PlayerManager
method), 146

get_player_by_id() (py-
planet.contrib.player.PlayerManager method),
147

get_player_data() (py-
planet.views.template.TemplateView method),
127

get_setting() (py-
planet.contrib.setting.GlobalSettingManager

method), 156
get_setting() (py-

planet.contrib.setting.manager.AppSettingManager
method), 152

get_setting() (py-
planet.contrib.setting.manager.GlobalSettingManager
method), 153

get_settings() (py-
planet.contrib.mode.ModeManager method),
157

get_signal() (pyplanet.core.events.manager._SignalManager
method), 140

get_value() (pyplanet.contrib.setting.Setting
method), 155

get_variables() (py-
planet.contrib.mode.ModeManager method),
157

get_visibility() (py-
planet.core.ui.ui_properties.UIProperties
method), 134

give_up (in module py-
planet.apps.core.trackmania.callbacks), 118

GlobalSettingManager (class in py-
planet.contrib.setting), 155

GlobalSettingManager (class in py-
planet.contrib.setting.manager), 152

glue() (pyplanet.core.events.callback.Callback
method), 140

graceful() (pyplanet.god.process.InstanceProcess
method), 143

H
handle() (pyplanet.contrib.command.Command

method), 149
handle_catch_all() (py-

planet.core.ui.components.DynamicManiaLink
method), 137

handle_catch_all() (py-
planet.core.ui.components.StaticManiaLink
method), 136

handle_catch_all() (pyplanet.views.base.View
method), 125

handle_catch_all() (py-
planet.views.generics.list.ListView method),
131

handle_catch_all() (py-
planet.views.template.TemplateView method),
127

handle_connect() (py-
planet.contrib.player.PlayerManager method),
147

handle_disconnect() (py-
planet.contrib.player.PlayerManager method),
147

Index 199

PyPlanet Documentation, Release 0.7.0

handle_generic() (in module py-
planet.core.events.callback), 141

handle_map_change() (py-
planet.contrib.map.MapManager method),
144

has_listeners() (py-
planet.core.events.dispatcher.Signal method),
141

has_permission() (py-
planet.contrib.permission.PermissionManager
method), 151

hide() (pyplanet.core.ui.components.DynamicManiaLink
method), 137

hide() (pyplanet.core.ui.components.StaticManiaLink
method), 136

hide() (pyplanet.views.base.View method), 125
hide() (pyplanet.views.template.TemplateView

method), 127
human_name (pyplanet.apps.AppConfig attribute), 124

I
import_app() (pyplanet.apps.AppConfig static

method), 124
ImproperlyConfigured, 132
init() (pyplanet.apps.Apps method), 123
init_app() (pyplanet.core.events.manager._SignalManager

method), 140
initiate_setting() (py-

planet.contrib.setting.Setting method), 155
Instance (class in pyplanet.core.instance), 133
InstanceProcess (class in pyplanet.god.process),

143
InvalidAppModule, 132
InvalidParamException, 151
is_alive() (pyplanet.god.process.InstanceProcess

method), 143
is_game_supported() (pyplanet.apps.AppConfig

method), 124
is_mode_supported() (pyplanet.apps.AppConfig

method), 124
is_valid() (pyplanet.contrib.command.ParameterParser

method), 150

L
label (pyplanet.apps.AppConfig attribute), 124
listen() (pyplanet.core.events.manager._SignalManager

method), 140
ListView (class in pyplanet.views.generics.list), 130
load_blacklist() (py-

planet.contrib.player.PlayerManager method),
147

load_matchsettings() (py-
planet.contrib.map.MapManager method),
144

loading_map_end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
99

loading_map_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
99

LocalDriver (class in py-
planet.core.storage.drivers.local), 139

M
manialink_answer (in module py-

planet.apps.core.maniaplanet.callbacks.ui),
108

ManialinkMemoryLeakException, 137
ManualListView (class in py-

planet.views.generics.list), 132
map_begin (in module py-

planet.apps.core.maniaplanet.callbacks.map),
104

map_end (in module py-
planet.apps.core.maniaplanet.callbacks.map),
104

map_loaded() (pyplanet.contrib.player.PlayerManager
method), 147

map_start (in module py-
planet.apps.core.maniaplanet.callbacks.map),
105

map_start__end (in module py-
planet.apps.core.maniaplanet.callbacks.map),
105

MapException, 146
MapIncompatible, 146
MapManager (class in pyplanet.contrib.map), 143
MapNotFound, 146
maps() (pyplanet.contrib.map.MapManager property),

145
match() (pyplanet.contrib.command.Command

method), 149
match_end (in module py-

planet.apps.core.maniaplanet.callbacks.flow),
99

match_end__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
100

match_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
100

match_start__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
100

max_players() (py-
planet.contrib.player.PlayerManager prop-
erty), 147

200 Index

PyPlanet Documentation, Release 0.7.0

max_spectators() (py-
planet.contrib.player.PlayerManager prop-
erty), 147

mode_dependencies (pyplanet.apps.AppConfig at-
tribute), 124

ModeIncompatible, 146
ModeManager (class in pyplanet.contrib.mode), 157

N
name (pyplanet.apps.AppConfig attribute), 124
next_map() (pyplanet.contrib.map.MapManager

property), 145
NotValidated, 151

O
on_armor_empty (in module py-

planet.apps.core.shootmania.callbacks.base),
110

on_capture (in module py-
planet.apps.core.shootmania.callbacks.base),
110

on_command (in module py-
planet.apps.core.shootmania.callbacks.base),
111

on_default (in module py-
planet.apps.core.shootmania.callbacks.base),
111

on_destroy() (pyplanet.apps.AppConfig method),
124

on_fall_damage (in module py-
planet.apps.core.shootmania.callbacks.base),
111

on_hit (in module py-
planet.apps.core.shootmania.callbacks.base),
111

on_init() (pyplanet.apps.AppConfig method), 124
on_near_miss (in module py-

planet.apps.core.shootmania.callbacks.base),
112

on_shoot (in module py-
planet.apps.core.shootmania.callbacks.base),
112

on_shot_deny (in module py-
planet.apps.core.shootmania.callbacks.base),
112

on_start() (pyplanet.apps.AppConfig method), 124
on_start() (pyplanet.contrib.mode.ModeManager

method), 157
on_start() (pyplanet.contrib.permission.PermissionManager

method), 151
on_start() (pyplanet.contrib.player.PlayerManager

method), 147
on_stop() (pyplanet.apps.AppConfig method), 124

online() (pyplanet.contrib.player.PlayerManager
property), 147

online_logins() (py-
planet.contrib.player.PlayerManager prop-
erty), 147

open() (pyplanet.core.storage.storage.Storage
method), 138

open_map() (pyplanet.core.storage.storage.Storage
method), 138

open_match_settings() (py-
planet.core.storage.storage.Storage method),
138

P
ParameterParser (class in py-

planet.contrib.command), 150
ParamException, 151
ParamParseException, 151
ParamValidateException, 151
parse() (pyplanet.contrib.command.ParameterParser

method), 150
parse_parameter() (py-

planet.contrib.command.ParameterParser
method), 150

path (pyplanet.apps.AppConfig attribute), 124
performance_mode() (py-

planet.core.instance.Instance property),
133

PermissionManager (class in py-
planet.contrib.permission), 151

play_loop_end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
100

play_loop_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
100

player_added (in module py-
planet.apps.core.shootmania.callbacks.base),
113

player_chat (in module py-
planet.apps.core.maniaplanet.callbacks.player),
106

player_connect (in module py-
planet.apps.core.maniaplanet.callbacks.player),
106

player_disconnect (in module py-
planet.apps.core.maniaplanet.callbacks.player),
106

player_enter_player_slot (in module py-
planet.apps.core.maniaplanet.callbacks.player),
106

player_enter_spectator_slot (in module py-
planet.apps.core.maniaplanet.callbacks.player),
107

Index 201

PyPlanet Documentation, Release 0.7.0

player_info_changed (in module py-
planet.apps.core.maniaplanet.callbacks.player),
107

player_reload (in module py-
planet.apps.core.shootmania.callbacks.joust),
116

player_removed (in module py-
planet.apps.core.shootmania.callbacks.base),
113

player_request_action_change (in module py-
planet.apps.core.shootmania.callbacks.base),
113

player_request_respawn (in module py-
planet.apps.core.shootmania.callbacks.base),
114

player_score_points (in module py-
planet.apps.core.shootmania.callbacks.royal),
117

player_spawn (in module py-
planet.apps.core.shootmania.callbacks.royal),
117

player_throws_object (in module py-
planet.apps.core.shootmania.callbacks.base),
114

player_touches_object (in module py-
planet.apps.core.shootmania.callbacks.base),
114

player_triggers_sector (in module py-
planet.apps.core.shootmania.callbacks.base),
115

PlayerManager (class in pyplanet.contrib.player),
146

PlayerNotFound, 148
playlist_has_map() (py-

planet.contrib.map.MapManager method),
145

playlist_modified (in module py-
planet.apps.core.maniaplanet.callbacks.map),
105

podium_end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
101

podium_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
101

populate() (pyplanet.apps.Apps method), 123
populate() (pyplanet.god.pool.EnvironmentPool

method), 143
prepare() (pyplanet.contrib.chat.ChatManager

method), 159
prepare_raw() (pyplanet.contrib.chat.ChatManager

method), 159
previous_map() (py-

planet.contrib.map.MapManager property),

145
process() (pyplanet.core.events.dispatcher.Signal

method), 141
PromptView (class in pyplanet.views.generics.alert),

128
pyplanet.apps (module), 123
pyplanet.apps.core.maniaplanet.callbacks.flow

(module), 99
pyplanet.apps.core.maniaplanet.callbacks.map

(module), 104
pyplanet.apps.core.maniaplanet.callbacks.other

(module), 108
pyplanet.apps.core.maniaplanet.callbacks.player

(module), 106
pyplanet.apps.core.maniaplanet.callbacks.ui

(module), 108
pyplanet.apps.core.shootmania.callbacks.base

(module), 109
pyplanet.apps.core.shootmania.callbacks.elite

(module), 115
pyplanet.apps.core.shootmania.callbacks.joust

(module), 116
pyplanet.apps.core.shootmania.callbacks.royal

(module), 117
pyplanet.apps.core.trackmania.callbacks

(module), 117
pyplanet.contrib.chat (module), 159
pyplanet.contrib.command (module), 148
pyplanet.contrib.command.exceptions

(module), 151
pyplanet.contrib.converter (module), 158
pyplanet.contrib.converter.base (module),

158
pyplanet.contrib.converter.uaseco (mod-

ule), 158
pyplanet.contrib.converter.xaseco2 (mod-

ule), 158
pyplanet.contrib.map (module), 143
pyplanet.contrib.map.exceptions (module),

146
pyplanet.contrib.mode (module), 157
pyplanet.contrib.mode.signals (module),

158
pyplanet.contrib.permission (module), 151
pyplanet.contrib.permission.exceptions

(module), 152
pyplanet.contrib.player (module), 146
pyplanet.contrib.player.exceptions (mod-

ule), 148
pyplanet.contrib.setting (module), 154
pyplanet.contrib.setting.exceptions

(module), 156
pyplanet.contrib.setting.manager (mod-

ule), 152

202 Index

PyPlanet Documentation, Release 0.7.0

pyplanet.core.events.callback (module),
140

pyplanet.core.events.dispatcher (module),
141

pyplanet.core.events.manager (module), 139
pyplanet.core.exceptions (module), 132
pyplanet.core.instance (module), 133
pyplanet.core.storage (module), 138
pyplanet.core.storage.drivers (module),

139
pyplanet.core.storage.drivers.asyncssh

(module), 139
pyplanet.core.storage.drivers.local

(module), 139
pyplanet.core.storage.exceptions (mod-

ule), 138
pyplanet.core.storage.storage (module),

138
pyplanet.core.ui (module), 134
pyplanet.core.ui.components (module), 135
pyplanet.core.ui.exceptions (module), 137
pyplanet.core.ui.filters (module), 137
pyplanet.core.ui.loader (module), 137
pyplanet.core.ui.template (module), 134
pyplanet.core.ui.ui_properties (module),

134
pyplanet.god.pool (module), 142
pyplanet.god.process (module), 143
pyplanet.utils.gbxparser (module), 160
pyplanet.utils.style (module), 160
pyplanet.utils.times (module), 161
pyplanet.views.base (module), 125
pyplanet.views.generics.alert (module),

128
pyplanet.views.generics.list (module), 130
pyplanet.views.template (module), 126
PyPlanetLoader (class in pyplanet.core.ui.loader),

137

R
recursive_settings() (py-

planet.contrib.setting.GlobalSettingManager
property), 156

recursive_settings() (py-
planet.contrib.setting.manager.GlobalSettingManager
property), 153

refresh() (pyplanet.views.generics.list.ListView
method), 131

register() (pyplanet.contrib.command.CommandManager
method), 148

register() (pyplanet.contrib.permission.PermissionManager
method), 151

register() (pyplanet.contrib.setting.manager.AppSettingManager
method), 152

register() (pyplanet.core.events.dispatcher.Signal
method), 141

register_signal() (py-
planet.core.events.manager._SignalManager
method), 140

remove_map() (pyplanet.contrib.map.MapManager
method), 145

remove_map() (pyplanet.core.storage.storage.Storage
method), 138

render() (pyplanet.core.ui.components.DynamicManiaLink
method), 137

render() (pyplanet.core.ui.components.StaticManiaLink
method), 136

render() (pyplanet.views.base.View method), 125
render() (pyplanet.views.template.TemplateView

method), 127
reset() (pyplanet.core.ui.ui_properties.UIProperties

method), 135
respawn (in module py-

planet.apps.core.trackmania.callbacks), 118
restart() (pyplanet.god.pool.EnvironmentPool

method), 143
results (in module py-

planet.apps.core.shootmania.callbacks.joust),
116

results (in module py-
planet.apps.core.shootmania.callbacks.royal),
117

round_end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
101

round_end__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
101

round_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
101

round_start__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
102

S
save_blacklist() (py-

planet.contrib.player.PlayerManager method),
148

save_matchsettings() (py-
planet.contrib.map.MapManager method),
145

scores (in module py-
planet.apps.core.shootmania.callbacks.base),
115

scores (in module py-
planet.apps.core.trackmania.callbacks), 118

Index 203

PyPlanet Documentation, Release 0.7.0

script_mode_changed (in module py-
planet.contrib.mode.signals), 158

seek() (pyplanet.utils.gbxparser.GbxParser method),
160

selected_players (in module py-
planet.apps.core.shootmania.callbacks.joust),
116

send() (pyplanet.core.events.dispatcher.Signal
method), 141

send_robust() (py-
planet.core.events.dispatcher.Signal method),
142

SerializationException, 156
serialize_value() (py-

planet.contrib.setting.Setting method), 155
server_chat (in module py-

planet.apps.core.maniaplanet.callbacks.other),
109

server_end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
102

server_end__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
102

server_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
102

server_start__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
103

set_attribute() (py-
planet.core.ui.ui_properties.UIProperties
method), 135

set_current_map() (py-
planet.contrib.map.MapManager method),
145

set_next_map() (py-
planet.contrib.map.MapManager method),
145

set_next_script() (py-
planet.contrib.mode.ModeManager method),
157

set_self() (pyplanet.core.events.dispatcher.Signal
method), 142

set_value() (pyplanet.contrib.setting.Setting
method), 155

set_visibility() (py-
planet.core.ui.ui_properties.UIProperties
method), 135

Setting (class in pyplanet.contrib.setting), 154
setting (pyplanet.apps.config._AppContext attribute),

124
SettingException, 156
SFTPDriver (class in py-

planet.core.storage.drivers.asyncssh), 139
show_alert() (in module py-

planet.views.generics.alert), 130
shutdown() (pyplanet.god.pool.EnvironmentPool

method), 143
shutdown() (pyplanet.god.process.InstanceProcess

method), 143
Signal (class in pyplanet.core.events.dispatcher), 141
Signal.Meta (class in py-

planet.core.events.dispatcher), 141
signal_manager() (pyplanet.core.instance.Instance

property), 133
SignalException, 132
SignalGlueStop, 132
signals (pyplanet.apps.config._AppContext attribute),

124
single_list (pyplanet.views.generics.list.ListView

attribute), 132
start() (pyplanet.apps.Apps method), 123
start() (pyplanet.core.instance.Instance method), 133
start() (pyplanet.god.pool.EnvironmentPool method),

143
start() (pyplanet.god.process.InstanceProcess

method), 143
start_countdown (in module py-

planet.apps.core.trackmania.callbacks), 119
start_line (in module py-

planet.apps.core.trackmania.callbacks), 119
StaticManiaLink (class in py-

planet.core.ui.components), 135
status_changed (in module py-

planet.apps.core.maniaplanet.callbacks.flow),
103

stop() (pyplanet.apps.Apps method), 123
stop() (pyplanet.core.instance.Instance method), 133
Storage (class in pyplanet.core.storage.storage), 138
StorageException, 138
STRIP_ALL (in module pyplanet.utils.style), 160
STRIP_CAPITALS (in module pyplanet.utils.style), 160
STRIP_COLORS (in module pyplanet.utils.style), 160
STRIP_LINKS (in module pyplanet.utils.style), 160
STRIP_SHADOWS (in module pyplanet.utils.style), 160
STRIP_SIZES (in module pyplanet.utils.style), 160
stunt (in module py-

planet.apps.core.trackmania.callbacks), 119
style_strip() (in module pyplanet.utils.style), 160
subscribe() (pyplanet.core.ui.components.DynamicManiaLink

method), 137
subscribe() (pyplanet.core.ui.components.StaticManiaLink

method), 136
subscribe() (pyplanet.views.base.View method), 125
subscribe() (pyplanet.views.template.TemplateView

method), 127

204 Index

PyPlanet Documentation, Release 0.7.0

T
Template (class in pyplanet.core.ui.template), 134
TemplateView (class in pyplanet.views.template), 126
TransportException, 132
turn_end (in module py-

planet.apps.core.maniaplanet.callbacks.flow),
103

turn_end (in module py-
planet.apps.core.shootmania.callbacks.elite),
115

turn_end__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
103

turn_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
103

turn_start (in module py-
planet.apps.core.shootmania.callbacks.elite),
116

turn_start__end (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
104

type_name() (pyplanet.contrib.setting.Setting prop-
erty), 155

TypeUnknownException, 156

U
UasecoConverter (class in py-

planet.contrib.converter.uaseco), 158
ui (pyplanet.apps.config._AppContext attribute), 124
UIException, 137
UIProperties (class in py-

planet.core.ui.ui_properties), 134
UIPropertyDoesNotExist, 137
unloading_map_end (in module py-

planet.apps.core.maniaplanet.callbacks.flow),
104

unloading_map_start (in module py-
planet.apps.core.maniaplanet.callbacks.flow),
104

unregister() (pyplanet.core.events.dispatcher.Signal
method), 142

unserialize_value() (py-
planet.contrib.setting.Setting method), 155

update_next_settings() (py-
planet.contrib.mode.ModeManager method),
157

update_next_variables() (py-
planet.contrib.mode.ModeManager method),
157

update_settings() (py-
planet.contrib.mode.ModeManager method),
157

update_variables() (py-
planet.contrib.mode.ModeManager method),
158

upload_map() (pyplanet.contrib.map.MapManager
method), 145

usage_text() (pyplanet.contrib.command.Command
property), 150

V
View (class in pyplanet.views.base), 125
vote_updated (in module py-

planet.apps.core.maniaplanet.callbacks.other),
109

W
wait_for_input() (py-

planet.views.generics.alert.PromptView
method), 129

wait_for_reaction() (py-
planet.views.generics.alert.AlertView method),
128

warmup_end (in module py-
planet.apps.core.trackmania.callbacks), 120

warmup_end_round (in module py-
planet.apps.core.trackmania.callbacks), 120

warmup_start (in module py-
planet.apps.core.trackmania.callbacks), 120

warmup_start_round (in module py-
planet.apps.core.trackmania.callbacks), 120

warmup_status (in module py-
planet.apps.core.trackmania.callbacks), 121

watchdog() (pyplanet.god.pool.EnvironmentPool
method), 143

waypoint (in module py-
planet.apps.core.trackmania.callbacks), 121

will_restart() (py-
planet.god.process.InstanceProcess property),
143

X
Xaseco2Converter (class in py-

planet.contrib.converter.xaseco2), 158

Index 205

	Getting Started (installation)
	Requirements
	Installation by Binary (Experimental)
	Installation on Linux
	Installation on Windows

	Configuring PyPlanet
	Debug Mode (base)
	Pool defining (base)
	Owners (base)
	Database configuration (base.py)
	Dedicated Server (base)
	Server files settings (base)
	Storage (base)
	Cache (base)
	Self Upgrade (base)
	Songs (base)
	Logging (base)
	Enabling apps (apps)

	Starting PyPlanet
	Start and fork to PID file (Linux)
	Start/stop with Screen (Linux)
	Install SystemD Service (Linux)
	Start standalone and in foreground (Linux and Windows)

	Upgrading PyPlanet
	In-game upgrade method
	Manual PIP method

	Migrating from old controller
	Migrating from Xaseco2
	Migrating from UAseco
	Migrating from eXpansion
	Migrating from ManiaControl

	How To’s and troubleshooting
	Correct Database Collation (MySQL)
	MySQL Complaining about large indexes (1000 bytes)

	Admin
	Information
	Features
	Commands
	Signal handlers

	Advertisements
	Information
	Features
	Commands
	Signal handlers

	Best CPs
	Information
	Features
	Installation
	Commands
	Signal handlers

	Clock
	Information
	Features
	Signal handlers

	Dedimania Records
	Information
	Features
	Commands
	Signal handlers

	Dynamic Points
	Information
	Features
	Signal handlers

	Jukebox
	Information
	Features
	Commands
	Signal handlers

	Karma
	Information
	Features
	Commands
	Signal handlers

	Live Rankings
	Information
	Features
	Installation
	Commands
	Signal handlers

	Local Records
	Information
	Features
	Commands
	Signal handlers

	Map Info
	Information
	Features
	Commands
	Signal handlers

	Music Server
	Information
	Features
	Commands
	Signal handlers

	ManiaExchange
	Information
	Features
	Commands

	Players
	Information
	Features
	Commands
	Signal handlers

	Waiting Queue
	Information
	Features
	Commands
	Signal handlers

	Sector Times
	Information
	Features
	Signal handlers

	Transactions
	Information
	Features
	Commands
	Signal handlers

	Voting
	Information
	Features
	Commands
	Signal handlers

	Statistics
	Information
	Features
	Commands

	Architecture & Design
	Core Architecture
	Apps Architecture

	App Development
	Apps Architecture
	Life Cycle
	Create app
	Context (UI + Settings)
	Contrib + Core access
	Models
	Migrations
	Chat Messages
	Dedicated/Script methods
	User Interface
	Useful references

	Signals (callbacks)
	Maniaplanet
	Shootmania
	Trackmania

	API Documentation
	pyplanet.apps
	pyplanet.views
	pyplanet.core.exceptions
	pyplanet.core.instance
	pyplanet.core.ui
	pyplanet.core.storage
	pyplanet.core.events
	pyplanet.god
	pyplanet.contrib.map
	pyplanet.contrib.player
	pyplanet.contrib.command
	pyplanet.contrib.permission
	pyplanet.contrib.setting
	pyplanet.contrib.mode
	pyplanet.contrib.converter
	pyplanet.contrib.chat
	pyplanet.utils

	Support & Contact
	Demo Servers
	Who is behind PyPlanet

	Donate
	Privacy
	Error reports
	Analytics & Telemetry

	Changelog
	0.7.0 (05 October 2019)
	0.6.4 (17 February 2019)
	0.6.3 (17 November 2018)
	0.6.2 (17 November 2018)
	0.6.1 (7 October 2018)
	0.6.0 (5 May 2018)
	0.5.4
	0.5.3
	0.5.2
	0.5.1
	0.5.0
	0.4.5
	0.4.4
	0.4.3
	0.4.2
	0.4.1
	0.4.0
	0.3.3
	0.3.2
	0.3.1
	0.3.0
	0.2.0
	0.1.5
	0.1.4
	0.1.3
	0.1.2
	0.1.1
	0.1.0
	0.0.3
	0.0.2
	0.0.1

	Todo (docs)
	Some thoughts from experts
	Screenshots
	Indices and tables
	Links
	Python Module Index
	Index

